Cargando…

Inhibition of Euchromatic Histone Methyltransferase 1 and 2 Sensitizes Chronic Myeloid Leukemia Cells to Interferon Treatment

BACKGROUND: H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response. RESULTS: We report the ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Loh, Sheng Wei, Ng, Wei Lun, Yeo, Kok Siong, Lim, Yat-Yuen, Ea, Chee-Kwee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117596/
https://www.ncbi.nlm.nih.gov/pubmed/25079219
http://dx.doi.org/10.1371/journal.pone.0103915
Descripción
Sumario:BACKGROUND: H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response. RESULTS: We report the application of EHMT1 and EHMT2 specific chemical inhibitors to sensitize CML cell lines to interferon and imatinib treatments. Inhibition of EHMT1 and EHMT2 with BIX01294 enhances the cytotoxicity of IFNα2a in four CML cell lines, K562, KCL22, BV173 and KT1 cells. Chromatin immunoprecipitation assay shows that BIX01294 treatment enhances type I interferon response by reducing H3K9me2 at the promoters of interferon-stimulated genes. Additionally, BIX01294 treatment augments IFNα2a- and imatinib-mediated apoptosis in CML cell lines. Moreover, our data suggest that the expression level of EHMT1 and EHMT2 inversely correlates with the type I interferon responsiveness in CML cell lines. CONCLUSIONS: Our study sheds light on the role of EHMT1 and EHMT2 as potential targets in improving the efficacy of standard treatments of CML.