Cargando…

Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy

The recent discovery of perpendicular magnetic anisotropy (PMA) at the CoFeB/MgO interface has accelerated the development of next generation high-density non-volatile memories by utilizing perpendicular magnetic tunnel junctions (p-MTJs). However, the insufficient interfacial PMA in the typical Ta/...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, T., Zhang, Y., Cai, J. W., Pan, H. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118150/
https://www.ncbi.nlm.nih.gov/pubmed/25081387
http://dx.doi.org/10.1038/srep05895
Descripción
Sumario:The recent discovery of perpendicular magnetic anisotropy (PMA) at the CoFeB/MgO interface has accelerated the development of next generation high-density non-volatile memories by utilizing perpendicular magnetic tunnel junctions (p-MTJs). However, the insufficient interfacial PMA in the typical Ta/CoFeB/MgO system will not only complicate the p-MTJ optimization, but also limit the device density scalability. Moreover, the rapid decreases of PMA in Ta/CoFeB/MgO films with annealing temperature higher than 300°C will make the compatibility with CMOS integrated circuits a big problem. By replacing the Ta buffer layer with a thin Mo film, we have increased the PMA in the Ta/CoFeB/MgO structure by 20%. More importantly, the thermal stability of the perpendicularly magnetized (001)CoFeB/MgO films is greatly increased from 300°C to 425°C, making the Mo/CoFeB/MgO films attractive for a practical p-MTJ application.