Cargando…

MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis

MicroRNAs (miRNAs) have recently been recognized to have a role in human orthopedic disorders. The objective of our study was to explore the expression profile and biological function of miRNA-17-5p (miR-17-5p), which is well known to be related to cancer cell proliferation and invasion, in osteobla...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Jie, Feng, Xiaobo, Xu, Weihua, Yang, Shuhua, Zhang, Qing, Liu, Xianzhe, Feng, Yong, Dai, Zhipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119212/
https://www.ncbi.nlm.nih.gov/pubmed/25060766
http://dx.doi.org/10.1038/emm.2014.43
Descripción
Sumario:MicroRNAs (miRNAs) have recently been recognized to have a role in human orthopedic disorders. The objective of our study was to explore the expression profile and biological function of miRNA-17-5p (miR-17-5p), which is well known to be related to cancer cell proliferation and invasion, in osteoblastic differentiation and in cell proliferation. The expression levels of miR-17-5p in the femoral head mesenchymal stem cells of 20 patients with non-traumatic osteonecrosis (ON) and 10 patients with osteoarthritis (OA) were examined by quantitative reverse transcription-PCR (qRT–PCR). Furthermore, the interaction between miR-17-5p and SMAD7 was observed. We found that in non-traumatic ON samples the level of mature miR-17-5p was significantly lower than that of OA samples (P=0.0002). By targeting SMAD7, miR-17-5p promoted nuclear translocation of β-catenin, enhanced expression of COL1A1 and finally facilitated the proliferation and differentiation of HMSC-bm cells. We also demonstrated that restoring expression of SMAD7 in HMSC-bm cells partially reversed the function of miR-17-5p. Together, our data suggested a theory that dysfunction of a network containing miR-17-5p, SMAD7 and β-catenin could contribute to ON pathogenesis. The present study prompts the potential clinical value of miR-17-5p in non-traumatic ON.