Cargando…

The effects of functional fiber on postprandial glycemia, energy intake, satiety, palatability and gastrointestinal wellbeing: a randomized crossover trial

BACKGROUND: Fiber intakes in developed countries are generally below those recommended by relevant authorities. Given that many people consume fiber-depleted refined-grain products, adding functional fiber will help to increase fiber intakes. The objective of the study was to determine metabolic and...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Jannie Yi Fang, Smeele, Rebecca Jane Mason, Harington, Kate Daisy, van Loon, Fiona Maria, Wanders, Anne Jacoba, Venn, Bernard Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121305/
https://www.ncbi.nlm.nih.gov/pubmed/25066659
http://dx.doi.org/10.1186/1475-2891-13-76
Descripción
Sumario:BACKGROUND: Fiber intakes in developed countries are generally below those recommended by relevant authorities. Given that many people consume fiber-depleted refined-grain products, adding functional fiber will help to increase fiber intakes. The objective of the study was to determine metabolic and sensory effects of adding fiber to bread. METHODS: A double-blind pair of randomized crossover trials with a two-week washout in which two fiber-containing breads were compared with control bread. The functional fiber (fruit fiber and FibreMax™) was added to yield 10 g fiber per serve (two slices). Eighty participants (n = 37 fruit fiber and n = 43 FibreMax™) consumed one serve of bread (fiber or control) followed three hours later by a pasta meal consumed ad libitum. Outcome measures included glycemia, satiety, palatability, gastrointestinal wellbeing, visual appeal and subsequent energy intake of the pasta meal. Multivariate regression was undertaken to test for differences between treatment and control for blood glucose, satiety, and cumulative energy intake. Satiety responses were also compared by splitting the data into an immediate response after eating (0–30 min) and a return to hunger analysis (30–180 min). A Wilcoxon sign rank test was used for the first component (0–30 min) and Wilcoxon matched-pairs signed-rank test for the second component (30–180 min). Between treatment differences for gastrointestinal wellbeing were tested using Pearson’s chi-square test or Fisher’s exact test. RESULTS: Consumption of the fruit fiber bread reduced postprandial glycemia by 35% (95% CI 13 to 51; P = 0.004) and cumulative energy intake by 368 kJ (95% CI 163 to 531; P = 0.001). There was little influence on satiety and the bread was rated as having poor taste and smell whilst generating feelings of nausea in some participants. FibreMax™ enriched bread reduced glycemia by 43% (95% CI 17 to 61; P = 0.004) without influence on energy intake or satiety. Apart from a lower visual appeal, the FibreMax™ bread was palatable. Neither bread caused gastrointestinal discomfort related to flatulence or bloating. CONCLUSIONS: Enriching bread with 10 g of functional fiber per serve is feasible although reformulation is needed to create not only an acceptable bread, but a desirable product.