Cargando…
Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain
Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) gene mutations are the most frequent causes of autosomal recessive early onset Parkinson's disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124806/ https://www.ncbi.nlm.nih.gov/pubmed/25136611 http://dx.doi.org/10.1155/2014/690796 |
_version_ | 1782329679169978368 |
---|---|
author | Scuderi, Soraya La Cognata, Valentina Drago, Filippo Cavallaro, Sebastiano D'Agata, Velia |
author_facet | Scuderi, Soraya La Cognata, Valentina Drago, Filippo Cavallaro, Sebastiano D'Agata, Velia |
author_sort | Scuderi, Soraya |
collection | PubMed |
description | Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) gene mutations are the most frequent causes of autosomal recessive early onset Parkinson's disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease, Alzheimer disease, autism, and cancer. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification. To date several PARK2 splice variants have been identified; however, the expression and distribution of parkin isoforms have not been deeply investigated yet. Here, the currently known PARK2 gene transcripts and relative predicted encoded proteins in human, rat, and mouse are reviewed. By analyzing the literature, we highlight the existing data showing the presence of multiple parkin isoforms in the brain. Their expression emerges from conflicting results regarding the electrophoretic mobility of the protein, but it is also assumed from discrepant observations on the cellular and tissue distribution of parkin. Although the characterization of each predicted isoforms is complex, since they often diverge only for few amino acids, analysis of their expression patterns in the brain might account for the different pathogenetic effects linked to PARK2 gene mutations. |
format | Online Article Text |
id | pubmed-4124806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-41248062014-08-18 Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain Scuderi, Soraya La Cognata, Valentina Drago, Filippo Cavallaro, Sebastiano D'Agata, Velia Biomed Res Int Review Article Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) gene mutations are the most frequent causes of autosomal recessive early onset Parkinson's disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease, Alzheimer disease, autism, and cancer. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification. To date several PARK2 splice variants have been identified; however, the expression and distribution of parkin isoforms have not been deeply investigated yet. Here, the currently known PARK2 gene transcripts and relative predicted encoded proteins in human, rat, and mouse are reviewed. By analyzing the literature, we highlight the existing data showing the presence of multiple parkin isoforms in the brain. Their expression emerges from conflicting results regarding the electrophoretic mobility of the protein, but it is also assumed from discrepant observations on the cellular and tissue distribution of parkin. Although the characterization of each predicted isoforms is complex, since they often diverge only for few amino acids, analysis of their expression patterns in the brain might account for the different pathogenetic effects linked to PARK2 gene mutations. Hindawi Publishing Corporation 2014 2014-07-16 /pmc/articles/PMC4124806/ /pubmed/25136611 http://dx.doi.org/10.1155/2014/690796 Text en Copyright © 2014 Soraya Scuderi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Scuderi, Soraya La Cognata, Valentina Drago, Filippo Cavallaro, Sebastiano D'Agata, Velia Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title | Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title_full | Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title_fullStr | Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title_full_unstemmed | Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title_short | Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain |
title_sort | alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124806/ https://www.ncbi.nlm.nih.gov/pubmed/25136611 http://dx.doi.org/10.1155/2014/690796 |
work_keys_str_mv | AT scuderisoraya alternativesplicinggeneratesdifferentparkinproteinisoformsevidencesinhumanratandmousebrain AT lacognatavalentina alternativesplicinggeneratesdifferentparkinproteinisoformsevidencesinhumanratandmousebrain AT dragofilippo alternativesplicinggeneratesdifferentparkinproteinisoformsevidencesinhumanratandmousebrain AT cavallarosebastiano alternativesplicinggeneratesdifferentparkinproteinisoformsevidencesinhumanratandmousebrain AT dagatavelia alternativesplicinggeneratesdifferentparkinproteinisoformsevidencesinhumanratandmousebrain |