Cargando…
The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres
Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125388/ https://www.ncbi.nlm.nih.gov/pubmed/24879463 http://dx.doi.org/10.1534/genetics.114.164707 |
_version_ | 1782329772769017856 |
---|---|
author | Williams, Jaime M. Ouenzar, Faissal Lemon, Laramie D. Chartrand, Pascal Bertuch, Alison A. |
author_facet | Williams, Jaime M. Ouenzar, Faissal Lemon, Laramie D. Chartrand, Pascal Bertuch, Alison A. |
author_sort | Williams, Jaime M. |
collection | PubMed |
description | Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku–TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku’s ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku–TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku–TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme. |
format | Online Article Text |
id | pubmed-4125388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-41253882014-08-11 The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres Williams, Jaime M. Ouenzar, Faissal Lemon, Laramie D. Chartrand, Pascal Bertuch, Alison A. Genetics Investigations Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku–TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku’s ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku–TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku–TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme. Genetics Society of America 2014-08 2014-05-30 /pmc/articles/PMC4125388/ /pubmed/24879463 http://dx.doi.org/10.1534/genetics.114.164707 Text en Copyright © 2014 by the Genetics Society of America Available freely online through the author-supported open access option. |
spellingShingle | Investigations Williams, Jaime M. Ouenzar, Faissal Lemon, Laramie D. Chartrand, Pascal Bertuch, Alison A. The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title | The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title_full | The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title_fullStr | The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title_full_unstemmed | The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title_short | The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres |
title_sort | principal role of ku in telomere length maintenance is promotion of est1 association with telomeres |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125388/ https://www.ncbi.nlm.nih.gov/pubmed/24879463 http://dx.doi.org/10.1534/genetics.114.164707 |
work_keys_str_mv | AT williamsjaimem theprincipalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT ouenzarfaissal theprincipalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT lemonlaramied theprincipalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT chartrandpascal theprincipalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT bertuchalisona theprincipalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT williamsjaimem principalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT ouenzarfaissal principalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT lemonlaramied principalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT chartrandpascal principalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres AT bertuchalisona principalroleofkuintelomerelengthmaintenanceispromotionofest1associationwithtelomeres |