Cargando…

Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular ton...

Descripción completa

Detalles Bibliográficos
Autores principales: Watkins, Stacey, Robel, Stefanie, Kimbrough, Ian F., Robert, Stephanie M., Ellis-Davies, Graham, Sontheimer, Harald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127490/
https://www.ncbi.nlm.nih.gov/pubmed/24943270
http://dx.doi.org/10.1038/ncomms5196
Descripción
Sumario:Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca(2+)-dependent release of K(+). These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease.