Cargando…

Celastrol Inhibits Lung Infiltration in Differential Syndrome Animal Models by Reducing TNF-α and ICAM-1 Levels while Preserving Differentiation in ATRA-Induced Acute Promyelocytic Leukemia Cells

All-trans retinoic acid (ATRA) is a revolutionary agent for acute promyelocytic leukemia (APL) treatment via differentiation induction. However, ATRA treatment also increases cytokine, chemokine, and adhesive molecule (mainly ICAM-1) expression, which can cause clinical complications, including a se...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Li-min, Zheng, Yue-juan, Wang, Ying, Yang, Yang, Cao, Fan-fan, Peng, Bin, Xu, Xiong-fei, An, Hua-zhang, Zheng, Ao-xiang, Zhang, Deng-hai, Uzan, Georges, Yu, Yi-zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130635/
https://www.ncbi.nlm.nih.gov/pubmed/25116125
http://dx.doi.org/10.1371/journal.pone.0105131
Descripción
Sumario:All-trans retinoic acid (ATRA) is a revolutionary agent for acute promyelocytic leukemia (APL) treatment via differentiation induction. However, ATRA treatment also increases cytokine, chemokine, and adhesive molecule (mainly ICAM-1) expression, which can cause clinical complications, including a severe situation known as differentiation syndrome (DS) which can cause death. Therefore, it is of clinical significance to find a strategy to specifically blunt inflammatory effects while preserving differentiation. Here we report that the natural compound, celastrol, could effectively block lung infiltrations in DS animal models created by loading ATRA-induced APL cell line NB4. In ATRA-treated NB4 cells, celastrol could potently inhibit ICAM-1 elevation and partially reduce TNF-α and IL-1β secretion, though treatment showed no effects on IL-8 and MCP-1 levels. Celastrol’s effect on ICAM-1 in ATRA-treated NB4 was related to reducing MEK1/ERK1 activation. Strikingly and encouragingly, celastrol showed no obvious effects on ATRA-induced NB4 differentiation, as determined by morphology, enzymes, and surface markers. Our results show that celastrol is a promising and unique agent for managing the side effects of ATRA application on APL, and suggest that hyper-inflammatory ability is accompanied by, but not necessary for, APL differentiation. Thus we offered an encouraging novel strategy to further improve differentiation therapy.