Cargando…
Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data
BACKGROUND: Network inference deals with the reconstruction of molecular networks from experimental data. Given N molecular species, the challenge is to find the underlying network. Due to data limitations, this typically is an ill-posed problem, and requires the integration of prior biological know...
Autores principales: | Kiani, Narsis A, Kaderali, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133630/ https://www.ncbi.nlm.nih.gov/pubmed/25047753 http://dx.doi.org/10.1186/1471-2105-15-250 |
Ejemplares similares
-
Network inference from perturbation time course data
por: Sarmah, Deepraj, et al.
Publicado: (2022) -
Accelerated probabilistic inference of RNA structure evolution
por: Holmes, Ian
Publicado: (2005) -
Inferring signaling pathways with probabilistic programming
por: Merrell, David, et al.
Publicado: (2020) -
Recursive regularization for inferring gene networks from time-course gene expression profiles
por: Shimamura, Teppei, et al.
Publicado: (2009) -
Reconstruction of Cellular Signal Transduction Networks Using Perturbation Assays and Linear Programming
por: Knapp, Bettina, et al.
Publicado: (2013)