Cargando…
A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships
Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experim...
Autores principales: | Newton, Richard, Wernisch, Lorenz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141782/ https://www.ncbi.nlm.nih.gov/pubmed/25148247 http://dx.doi.org/10.1371/journal.pone.0105522 |
Ejemplares similares
-
Investigating inter-chromosomal regulatory relationships through a comprehensive meta-analysis of matched copy number and transcriptomics data sets
por: Newton, Richard, et al.
Publicado: (2015) -
Testing the Utility of an Integrated Analysis of Copy Number and Transcriptomics Datasets for Inferring Gene Regulatory Relationships
por: Goh, Xin Yi, et al.
Publicado: (2013) -
A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes
por: Newton, Richard, et al.
Publicado: (2019) -
Inferring copy number and genotype in tumour exome data
por: Amarasinghe, Kaushalya C, et al.
Publicado: (2014) -
Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts
por: Moreno-De-Luca, D, et al.
Publicado: (2013)