Cargando…
Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors
Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142974/ https://www.ncbi.nlm.nih.gov/pubmed/25161832 http://dx.doi.org/10.3762/bjnano.5.110 |
_version_ | 1782331845017337856 |
---|---|
author | Roinila, Tomi Yu, Xiao Verho, Jarmo Li, Tie Kallio, Pasi Vilkko, Matti Gao, Anran Wang, Yuelin |
author_facet | Roinila, Tomi Yu, Xiao Verho, Jarmo Li, Tie Kallio, Pasi Vilkko, Matti Gao, Anran Wang, Yuelin |
author_sort | Roinila, Tomi |
collection | PubMed |
description | Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage–current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS) is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET. |
format | Online Article Text |
id | pubmed-4142974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-41429742014-08-26 Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors Roinila, Tomi Yu, Xiao Verho, Jarmo Li, Tie Kallio, Pasi Vilkko, Matti Gao, Anran Wang, Yuelin Beilstein J Nanotechnol Full Research Paper Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage–current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS) is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET. Beilstein-Institut 2014-07-04 /pmc/articles/PMC4142974/ /pubmed/25161832 http://dx.doi.org/10.3762/bjnano.5.110 Text en Copyright © 2014, Roinila et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Roinila, Tomi Yu, Xiao Verho, Jarmo Li, Tie Kallio, Pasi Vilkko, Matti Gao, Anran Wang, Yuelin Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title | Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title_full | Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title_fullStr | Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title_full_unstemmed | Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title_short | Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
title_sort | methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142974/ https://www.ncbi.nlm.nih.gov/pubmed/25161832 http://dx.doi.org/10.3762/bjnano.5.110 |
work_keys_str_mv | AT roinilatomi methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT yuxiao methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT verhojarmo methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT litie methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT kalliopasi methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT vilkkomatti methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT gaoanran methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors AT wangyuelin methodsforrapidfrequencydomaincharacterizationofleakagecurrentsinsiliconnanowirebasedfieldeffecttransistors |