Cargando…
Two-stage family-based designs for sequencing studies
The cost of next-generation sequencing is now approaching that of the first generation of genome-wide single-nucleotide genotyping panels, but this is still out of reach for large-scale epidemiologic studies with tens of thousands of subjects. Furthermore, the anticipated yield of millions of rare v...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143728/ https://www.ncbi.nlm.nih.gov/pubmed/25519319 http://dx.doi.org/10.1186/1753-6561-8-S1-S32 |
Sumario: | The cost of next-generation sequencing is now approaching that of the first generation of genome-wide single-nucleotide genotyping panels, but this is still out of reach for large-scale epidemiologic studies with tens of thousands of subjects. Furthermore, the anticipated yield of millions of rare variants poses serious challenges for distinguishing causal from noncausal variants for disease. We explore the merits of using family-based designs for sequencing substudies to identify novel variants and prioritize them for their likelihood of causality. While the sharing of variants within families means that family-based designs may be less efficient for discovery than sequencing of a comparable number of unrelated individuals, the ability to exploit cosegregation of variants with disease within families helps distinguish causal from noncausal ones. We introduce a score test criterion for prioritizing discovered variants in terms of their likelihood of being functional. We compare the relative statistical efficiency of 2-stage versus1-stage family-based designs by application to the Genetic Analysis Workshop 18 simulated sequence data. |
---|