Cargando…

Identifying rare variant associations in population-based and family-based designs

For almost all complex traits studied in humans, the identified genetic variants discovered to date have accounted for only a small portion of the estimated trait heritability. Consequently, several methods have been developed to identify rare single-nucleotide variants associated with complex trait...

Descripción completa

Detalles Bibliográficos
Autores principales: Turkmen, Asuman S, Lin, Shili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143803/
https://www.ncbi.nlm.nih.gov/pubmed/25519393
http://dx.doi.org/10.1186/1753-6561-8-S1-S58
_version_ 1782331961181732864
author Turkmen, Asuman S
Lin, Shili
author_facet Turkmen, Asuman S
Lin, Shili
author_sort Turkmen, Asuman S
collection PubMed
description For almost all complex traits studied in humans, the identified genetic variants discovered to date have accounted for only a small portion of the estimated trait heritability. Consequently, several methods have been developed to identify rare single-nucleotide variants associated with complex traits for population-based designs. Because rare disease variants tend to be enriched in families containing multiple affected individuals, family-based designs can play an important role in the identification of rare causal variants. In this study, we utilize Genetic Analysis Workshop 18 simulated data to examine the performance of some existing rare variant identification methods for unrelated individuals, including our recent method (rPLS). The simulated data is used to investigate whether there is an advantage to using family data compared to case-control data. The results indicate that population-based methods suffer from power loss, especially when the sample size is small. The family-based method employed in this paper results in higher power but fails to control type I error. Our study also highlights the importance of the phenotype choice, which can affect the power of detecting causal genes substantially.
format Online
Article
Text
id pubmed-4143803
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41438032014-09-02 Identifying rare variant associations in population-based and family-based designs Turkmen, Asuman S Lin, Shili BMC Proc Proceedings For almost all complex traits studied in humans, the identified genetic variants discovered to date have accounted for only a small portion of the estimated trait heritability. Consequently, several methods have been developed to identify rare single-nucleotide variants associated with complex traits for population-based designs. Because rare disease variants tend to be enriched in families containing multiple affected individuals, family-based designs can play an important role in the identification of rare causal variants. In this study, we utilize Genetic Analysis Workshop 18 simulated data to examine the performance of some existing rare variant identification methods for unrelated individuals, including our recent method (rPLS). The simulated data is used to investigate whether there is an advantage to using family data compared to case-control data. The results indicate that population-based methods suffer from power loss, especially when the sample size is small. The family-based method employed in this paper results in higher power but fails to control type I error. Our study also highlights the importance of the phenotype choice, which can affect the power of detecting causal genes substantially. BioMed Central 2014-06-17 /pmc/articles/PMC4143803/ /pubmed/25519393 http://dx.doi.org/10.1186/1753-6561-8-S1-S58 Text en Copyright © 2014 Turkmen and Lin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Proceedings
Turkmen, Asuman S
Lin, Shili
Identifying rare variant associations in population-based and family-based designs
title Identifying rare variant associations in population-based and family-based designs
title_full Identifying rare variant associations in population-based and family-based designs
title_fullStr Identifying rare variant associations in population-based and family-based designs
title_full_unstemmed Identifying rare variant associations in population-based and family-based designs
title_short Identifying rare variant associations in population-based and family-based designs
title_sort identifying rare variant associations in population-based and family-based designs
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143803/
https://www.ncbi.nlm.nih.gov/pubmed/25519393
http://dx.doi.org/10.1186/1753-6561-8-S1-S58
work_keys_str_mv AT turkmenasumans identifyingrarevariantassociationsinpopulationbasedandfamilybaseddesigns
AT linshili identifyingrarevariantassociationsinpopulationbasedandfamilybaseddesigns