Cargando…
Critical limitations of consensus clustering in class discovery
Consensus clustering (CC) has been adopted for unsupervised class discovery in many genomic studies. It calculates how frequently two samples are grouped together in repeated clustering runs, and uses the resulting pairwise "consensus rates" for visual demonstration that clusters exist, fo...
Autores principales: | Șenbabaoğlu, Yasin, Michailidis, George, Li, Jun Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145288/ https://www.ncbi.nlm.nih.gov/pubmed/25158761 http://dx.doi.org/10.1038/srep06207 |
Ejemplares similares
-
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
por: Lim, Néhémy, et al.
Publicado: (2013) -
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010) -
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking
por: Wilkerson, Matthew D., et al.
Publicado: (2010) -
Recursive Consensus Clustering for novel subtype discovery from transcriptome data
por: Sonpatki, Pranali, et al.
Publicado: (2020) -
Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering
por: Freyhult, Eva, et al.
Publicado: (2010)