Cargando…

A tethered delivery mechanism explains the catalytic action of a microtubule polymerase

Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectivel...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayaz, Pelin, Munyoki, Sarah, Geyer, Elisabeth A, Piedra, Felipe-Andrés, Vu, Emily S, Bromberg, Raquel, Otwinowski, Zbyszek, Grishin, Nick V, Brautigam, Chad A, Rice, Luke M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145800/
https://www.ncbi.nlm.nih.gov/pubmed/25097237
http://dx.doi.org/10.7554/eLife.03069
_version_ 1782332224007307264
author Ayaz, Pelin
Munyoki, Sarah
Geyer, Elisabeth A
Piedra, Felipe-Andrés
Vu, Emily S
Bromberg, Raquel
Otwinowski, Zbyszek
Grishin, Nick V
Brautigam, Chad A
Rice, Luke M
author_facet Ayaz, Pelin
Munyoki, Sarah
Geyer, Elisabeth A
Piedra, Felipe-Andrés
Vu, Emily S
Bromberg, Raquel
Otwinowski, Zbyszek
Grishin, Nick V
Brautigam, Chad A
Rice, Luke M
author_sort Ayaz, Pelin
collection PubMed
description Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectively to a fully ‘curved’ conformation of αβ-tubulin, incompatible with a microtubule lattice. We also show that TOG1-TOG2 binds non-cooperatively to two αβ-tubulins. Preferential interactions between TOGs and fully curved αβ-tubulin that cannot exist elsewhere in the microtubule explain how these polymerases localize to the extreme microtubule end. We propose that these polymerases promote elongation because their linked TOG domains concentrate unpolymerized αβ-tubulin near curved subunits already bound at the microtubule end. This tethering model can explain catalyst-like behavior and also predicts that the polymerase action changes the configuration of the microtubule end. DOI: http://dx.doi.org/10.7554/eLife.03069.001
format Online
Article
Text
id pubmed-4145800
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-41458002014-08-28 A tethered delivery mechanism explains the catalytic action of a microtubule polymerase Ayaz, Pelin Munyoki, Sarah Geyer, Elisabeth A Piedra, Felipe-Andrés Vu, Emily S Bromberg, Raquel Otwinowski, Zbyszek Grishin, Nick V Brautigam, Chad A Rice, Luke M eLife Biophysics and Structural Biology Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectively to a fully ‘curved’ conformation of αβ-tubulin, incompatible with a microtubule lattice. We also show that TOG1-TOG2 binds non-cooperatively to two αβ-tubulins. Preferential interactions between TOGs and fully curved αβ-tubulin that cannot exist elsewhere in the microtubule explain how these polymerases localize to the extreme microtubule end. We propose that these polymerases promote elongation because their linked TOG domains concentrate unpolymerized αβ-tubulin near curved subunits already bound at the microtubule end. This tethering model can explain catalyst-like behavior and also predicts that the polymerase action changes the configuration of the microtubule end. DOI: http://dx.doi.org/10.7554/eLife.03069.001 eLife Sciences Publications, Ltd 2014-08-05 /pmc/articles/PMC4145800/ /pubmed/25097237 http://dx.doi.org/10.7554/eLife.03069 Text en Copyright © 2014, Ayaz et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biophysics and Structural Biology
Ayaz, Pelin
Munyoki, Sarah
Geyer, Elisabeth A
Piedra, Felipe-Andrés
Vu, Emily S
Bromberg, Raquel
Otwinowski, Zbyszek
Grishin, Nick V
Brautigam, Chad A
Rice, Luke M
A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title_full A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title_fullStr A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title_full_unstemmed A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title_short A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
title_sort tethered delivery mechanism explains the catalytic action of a microtubule polymerase
topic Biophysics and Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145800/
https://www.ncbi.nlm.nih.gov/pubmed/25097237
http://dx.doi.org/10.7554/eLife.03069
work_keys_str_mv AT ayazpelin atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT munyokisarah atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT geyerelisabetha atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT piedrafelipeandres atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT vuemilys atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT brombergraquel atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT otwinowskizbyszek atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT grishinnickv atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT brautigamchada atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT ricelukem atethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT ayazpelin tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT munyokisarah tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT geyerelisabetha tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT piedrafelipeandres tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT vuemilys tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT brombergraquel tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT otwinowskizbyszek tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT grishinnickv tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT brautigamchada tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase
AT ricelukem tethereddeliverymechanismexplainsthecatalyticactionofamicrotubulepolymerase