Cargando…
Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis
Current laboratory methods to isolate rare (1:10,000 to 1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. Seamless BAC mutagenesis needs two steps: isolation of rare recombinants using selectable markers, followed by marker removal through counterselection. He...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149595/ https://www.ncbi.nlm.nih.gov/pubmed/25028895 http://dx.doi.org/10.1038/nmeth.3030 |
Sumario: | Current laboratory methods to isolate rare (1:10,000 to 1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. Seamless BAC mutagenesis needs two steps: isolation of rare recombinants using selectable markers, followed by marker removal through counterselection. Here we illustrate founder principle-driven enrichment (FPE), a simple method developed to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof-of-principle, we isolated 1:100,000 seamless fluorescent protein-modified Nodal BACs via FPE and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1-phage derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated running <40 PCRs and we developed a web-based calculator to optimize FPE. By eliminating the need for selection-counterselection, this work highlights a straightforward and low-cost approach to BAC mutagenesis, providing a tool for seamless recombineering pipelines in functional genomics. |
---|