Cargando…
Discovery of a novel (R)-selective bacterial hydroxynitrile lyase from Acidobacterium capsulatum
Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, ba...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151996/ https://www.ncbi.nlm.nih.gov/pubmed/25210600 http://dx.doi.org/10.1016/j.csbj.2014.07.002 |
Sumario: | Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been discovered, which represent a completely new type: HNLs with a cupin fold. Due to various benefits of cupins (e.g. high yield recombinant expression in Escherichia coli), the class of cupin HNLs provides a new source for interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity, enantioselectivity, stability and substrate scope. In this study, database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs. |
---|