Cargando…
Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats
Neuroprotection of lithium for axotomized retinal ganglion cells (RGCs) is attributed to upregulated intraretinal Bcl-2. As lithium also upregulates brain-derived neurotrophic factor (BDNF) which can rescue axotomized RGCs, it is hypothesized that lithium could protect RGCs through BDNF. This study...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159810/ https://www.ncbi.nlm.nih.gov/pubmed/25100168 http://dx.doi.org/10.3390/ijms150813550 |
_version_ | 1782334284141428736 |
---|---|
author | Wu, Ming-Mei Zhu, Ting-Ting Wang, Peng Kuang, Fang Hao, Ding-Jun You, Si-Wei Li, Yao-Yu |
author_facet | Wu, Ming-Mei Zhu, Ting-Ting Wang, Peng Kuang, Fang Hao, Ding-Jun You, Si-Wei Li, Yao-Yu |
author_sort | Wu, Ming-Mei |
collection | PubMed |
description | Neuroprotection of lithium for axotomized retinal ganglion cells (RGCs) is attributed to upregulated intraretinal Bcl-2. As lithium also upregulates brain-derived neurotrophic factor (BDNF) which can rescue axotomized RGCs, it is hypothesized that lithium could protect RGCs through BDNF. This study investigated this hypothesis and a possible relationship between the dose and protection of lithium. All adult experimental rats received daily intraperitoneal injections of lithium chloride (LiCl) at 30, 60 or 85 mg/kg·bw until they were euthanized 2, 7 or 14 days after left intraorbital optic nerve (ON) transection. Our results revealed that RGC densities promoted and declined with increased dose of LiCl and the highest RGC densities were always in the 60 mg/kg·bw LiCl group at both 7 and 14 day points. Similar promotion and decline in the mRNA and protein levels of intraretinal BDNF were also found at the 14 day point, while such BDNF levels increased in the 30 mg/kg·bw LiCl group but peaked in the 60 and 85 mg/kg·bw LiCl groups at the 7 day point. These findings suggested that lithium can delay the death of axotomized RGCs in a dose-dependent manner within a certain period after ON injury and such beneficial effect is interrelated with an upregulated level of intraretinal BDNF. |
format | Online Article Text |
id | pubmed-4159810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-41598102014-09-18 Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats Wu, Ming-Mei Zhu, Ting-Ting Wang, Peng Kuang, Fang Hao, Ding-Jun You, Si-Wei Li, Yao-Yu Int J Mol Sci Article Neuroprotection of lithium for axotomized retinal ganglion cells (RGCs) is attributed to upregulated intraretinal Bcl-2. As lithium also upregulates brain-derived neurotrophic factor (BDNF) which can rescue axotomized RGCs, it is hypothesized that lithium could protect RGCs through BDNF. This study investigated this hypothesis and a possible relationship between the dose and protection of lithium. All adult experimental rats received daily intraperitoneal injections of lithium chloride (LiCl) at 30, 60 or 85 mg/kg·bw until they were euthanized 2, 7 or 14 days after left intraorbital optic nerve (ON) transection. Our results revealed that RGC densities promoted and declined with increased dose of LiCl and the highest RGC densities were always in the 60 mg/kg·bw LiCl group at both 7 and 14 day points. Similar promotion and decline in the mRNA and protein levels of intraretinal BDNF were also found at the 14 day point, while such BDNF levels increased in the 30 mg/kg·bw LiCl group but peaked in the 60 and 85 mg/kg·bw LiCl groups at the 7 day point. These findings suggested that lithium can delay the death of axotomized RGCs in a dose-dependent manner within a certain period after ON injury and such beneficial effect is interrelated with an upregulated level of intraretinal BDNF. MDPI 2014-08-05 /pmc/articles/PMC4159810/ /pubmed/25100168 http://dx.doi.org/10.3390/ijms150813550 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Wu, Ming-Mei Zhu, Ting-Ting Wang, Peng Kuang, Fang Hao, Ding-Jun You, Si-Wei Li, Yao-Yu Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title | Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title_full | Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title_fullStr | Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title_full_unstemmed | Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title_short | Dose-Dependent Protective Effect of Lithium Chloride on Retinal Ganglion Cells Is Interrelated with an Upregulated Intraretinal BDNF after Optic Nerve Transection in Adult Rats |
title_sort | dose-dependent protective effect of lithium chloride on retinal ganglion cells is interrelated with an upregulated intraretinal bdnf after optic nerve transection in adult rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159810/ https://www.ncbi.nlm.nih.gov/pubmed/25100168 http://dx.doi.org/10.3390/ijms150813550 |
work_keys_str_mv | AT wumingmei dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT zhutingting dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT wangpeng dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT kuangfang dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT haodingjun dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT yousiwei dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats AT liyaoyu dosedependentprotectiveeffectoflithiumchlorideonretinalganglioncellsisinterrelatedwithanupregulatedintraretinalbdnfafteropticnervetransectioninadultrats |