Cargando…

Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System

Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerfu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Cui, Xiao, Bo, Jiang, Yuanyuan, Zhao, Yihua, Li, Zhenkui, Gao, Han, Ling, Yuan, Wei, Jun, Li, Shaoneng, Lu, Mingke, Su, Xin-zhuan, Cui, Huiting, Yuan, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161241/
https://www.ncbi.nlm.nih.gov/pubmed/24987097
http://dx.doi.org/10.1128/mBio.01414-14
Descripción
Sumario:Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerful technique for genome editing and has been widely employed to study gene function in various organisms. However, whether this technique can be applied to modify the genomes of malaria parasites has not been determined. In this paper, we demonstrated that Cas9 is able to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. By supplying engineered homologous repair templates, we generated targeted deletion, reporter knock-in, and nucleotide replacement in multiple parasite genes, achieving up to 100% efficiency in gene deletion and 22 to 45% efficiencies in knock-in and allelic replacement. Our results establish methodologies for introducing desired modifications in the P. yoelii genome with high efficiency and accuracy, which will greatly improve our ability to study gene function of malaria parasites.