Cargando…
Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity
[Image: see text] Here we investigate a novel signal-on electrochemical DNA sensor based on the use of a clamp-like DNA probe that binds a complementary target sequence through two distinct and sequential events, which lead to the formation of a triplex DNA structure. We demonstrate that this target...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165453/ https://www.ncbi.nlm.nih.gov/pubmed/24947124 http://dx.doi.org/10.1021/ac501418g |
_version_ | 1782335103552192512 |
---|---|
author | Idili, Andrea Amodio, Alessia Vidonis, Marco Feinberg-Somerson, Jacob Castronovo, Matteo Ricci, Francesco |
author_facet | Idili, Andrea Amodio, Alessia Vidonis, Marco Feinberg-Somerson, Jacob Castronovo, Matteo Ricci, Francesco |
author_sort | Idili, Andrea |
collection | PubMed |
description | [Image: see text] Here we investigate a novel signal-on electrochemical DNA sensor based on the use of a clamp-like DNA probe that binds a complementary target sequence through two distinct and sequential events, which lead to the formation of a triplex DNA structure. We demonstrate that this target-binding mechanism can improve both the affinity and specificity of recognition as opposed to classic probes solely based on Watson–Crick recognition. By using electrochemical signaling to report the conformational change, we demonstrate a signal-on E-DNA sensor with up to 400% signal gain upon target binding. Moreover, we were able to detect with nanomolar affinity a perfectly matched target as short as 10 bases (K(D) = 0.39 nM). Finally, thanks to the molecular “double-check” provided by the concomitant Watson–Crick and Hoogsteen base pairings involved in target recognition, our sensor provides excellent discrimination efficiency toward a single-base mismatched target. |
format | Online Article Text |
id | pubmed-4165453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41654532015-06-20 Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity Idili, Andrea Amodio, Alessia Vidonis, Marco Feinberg-Somerson, Jacob Castronovo, Matteo Ricci, Francesco Anal Chem [Image: see text] Here we investigate a novel signal-on electrochemical DNA sensor based on the use of a clamp-like DNA probe that binds a complementary target sequence through two distinct and sequential events, which lead to the formation of a triplex DNA structure. We demonstrate that this target-binding mechanism can improve both the affinity and specificity of recognition as opposed to classic probes solely based on Watson–Crick recognition. By using electrochemical signaling to report the conformational change, we demonstrate a signal-on E-DNA sensor with up to 400% signal gain upon target binding. Moreover, we were able to detect with nanomolar affinity a perfectly matched target as short as 10 bases (K(D) = 0.39 nM). Finally, thanks to the molecular “double-check” provided by the concomitant Watson–Crick and Hoogsteen base pairings involved in target recognition, our sensor provides excellent discrimination efficiency toward a single-base mismatched target. American Chemical Society 2014-06-20 2014-09-16 /pmc/articles/PMC4165453/ /pubmed/24947124 http://dx.doi.org/10.1021/ac501418g Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Idili, Andrea Amodio, Alessia Vidonis, Marco Feinberg-Somerson, Jacob Castronovo, Matteo Ricci, Francesco Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity |
title | Folding-Upon-Binding and Signal-On Electrochemical
DNA Sensor with High Affinity and Specificity |
title_full | Folding-Upon-Binding and Signal-On Electrochemical
DNA Sensor with High Affinity and Specificity |
title_fullStr | Folding-Upon-Binding and Signal-On Electrochemical
DNA Sensor with High Affinity and Specificity |
title_full_unstemmed | Folding-Upon-Binding and Signal-On Electrochemical
DNA Sensor with High Affinity and Specificity |
title_short | Folding-Upon-Binding and Signal-On Electrochemical
DNA Sensor with High Affinity and Specificity |
title_sort | folding-upon-binding and signal-on electrochemical
dna sensor with high affinity and specificity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165453/ https://www.ncbi.nlm.nih.gov/pubmed/24947124 http://dx.doi.org/10.1021/ac501418g |
work_keys_str_mv | AT idiliandrea foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity AT amodioalessia foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity AT vidonismarco foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity AT feinbergsomersonjacob foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity AT castronovomatteo foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity AT riccifrancesco foldinguponbindingandsignalonelectrochemicaldnasensorwithhighaffinityandspecificity |