Cargando…
Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk
Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify novel lipid genes, fine-map known lipid loci, and evaluate whether low frequency variants with large effect exist. Using an exome array, we genotyp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169222/ https://www.ncbi.nlm.nih.gov/pubmed/24633158 http://dx.doi.org/10.1038/ng.2926 |
Sumario: | Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify novel lipid genes, fine-map known lipid loci, and evaluate whether low frequency variants with large effect exist. Using an exome array, we genotyped 80,137 coding variants in 5,643 Norwegians. We followed up 18 variants in 4,666 Norwegians to identify 10 loci with coding variants associated with a lipid trait (P < 5×10(−8)). One coding variant in TM6SF2 (p.Glu167Lys), residing in a GWAS locus for lipid levels, modifies total cholesterol levels and is associated with myocardial infarction. Transient overexpression and knockdown of TM6SF2 in mouse produces alteration in serum lipid profiles consistent with the association observed in humans, identifying TM6SF2 as the functional gene at a large GWAS locus previously known as NCAN/CILP2/PBX4 or 19p13. This study demonstrates that systematic assessment of coding variation can quickly point to a candidate causal gene. |
---|