Cargando…
Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase
BACKGROUND: Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyg...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171511/ https://www.ncbi.nlm.nih.gov/pubmed/25243911 http://dx.doi.org/10.1371/journal.pone.0108289 |
_version_ | 1782335898532184064 |
---|---|
author | Izquierdo-Garcia, Jose L. Cai, Larry M. Chaumeil, Myriam M. Eriksson, Pia Robinson, Aaron E. Pieper, Russell O. Phillips, Joanna J. Ronen, Sabrina M. |
author_facet | Izquierdo-Garcia, Jose L. Cai, Larry M. Chaumeil, Myriam M. Eriksson, Pia Robinson, Aaron E. Pieper, Russell O. Phillips, Joanna J. Ronen, Sabrina M. |
author_sort | Izquierdo-Garcia, Jose L. |
collection | PubMed |
description | BACKGROUND: Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production. METHODS: Immortalized normal human astrocytes engineered to express heterozygous mutant IDH1 or wild-type IDH1 were investigated. Flux of pyruvate via PC and via pyruvate dehydrogenase (PDH) was determined by using magnetic resonance spectroscopy to probe the labeling of [2-(13)C]glucose-derived (13)C-labeled glutamate and glutamine. Activity assays, RT-PCR and western blotting were used to probe the expression and activity of relevant enzymes. The Cancer Genome Atlas (TCGA) data was analyzed to assess the expression of enzymes in human glioma samples. RESULTS: Compared to wild-type cells, mutant IDH1 cells significantly increased fractional flux through PC. This was associated with a significant increase in PC activity and expression. Concurrently, PDH activity significantly decreased, likely mediated by significantly increased inhibitory PDH phosphorylation by PDH kinase 3. Consistent with the observation in cells, analysis of TCGA data indicated a significant increase in PC expression in mutant IDH-expressing human glioma samples compared to wild-type IDH. CONCLUSIONS: Our findings suggest that changes in PC and PDH may be an important part of cellular adaptation to the IDH1 mutation and may serve as potential therapeutic targets. |
format | Online Article Text |
id | pubmed-4171511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41715112014-09-25 Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase Izquierdo-Garcia, Jose L. Cai, Larry M. Chaumeil, Myriam M. Eriksson, Pia Robinson, Aaron E. Pieper, Russell O. Phillips, Joanna J. Ronen, Sabrina M. PLoS One Research Article BACKGROUND: Over 70% of low-grade gliomas carry a heterozygous R132H mutation in the gene coding for isocitrate dehydrogenase 1 (IDH1). This confers the enzyme with the novel ability to convert α-ketoglutarate to 2-hydroxyglutarate, ultimately leading to tumorigenesis. The major source of 2-hydroxyglutarate production is glutamine, which, in cancer, is also a source for tricarboxylic acid cycle (TCA) anaplerosis. An alternate source of anaplerosis is pyruvate flux via pyruvate carboxylase (PC), which is a common pathway in normal astrocytes. The goal of this study was to determine whether PC serves as a source of TCA anaplerosis in IDH1 mutant cells wherein glutamine is used for 2-hydroxyglutarate production. METHODS: Immortalized normal human astrocytes engineered to express heterozygous mutant IDH1 or wild-type IDH1 were investigated. Flux of pyruvate via PC and via pyruvate dehydrogenase (PDH) was determined by using magnetic resonance spectroscopy to probe the labeling of [2-(13)C]glucose-derived (13)C-labeled glutamate and glutamine. Activity assays, RT-PCR and western blotting were used to probe the expression and activity of relevant enzymes. The Cancer Genome Atlas (TCGA) data was analyzed to assess the expression of enzymes in human glioma samples. RESULTS: Compared to wild-type cells, mutant IDH1 cells significantly increased fractional flux through PC. This was associated with a significant increase in PC activity and expression. Concurrently, PDH activity significantly decreased, likely mediated by significantly increased inhibitory PDH phosphorylation by PDH kinase 3. Consistent with the observation in cells, analysis of TCGA data indicated a significant increase in PC expression in mutant IDH-expressing human glioma samples compared to wild-type IDH. CONCLUSIONS: Our findings suggest that changes in PC and PDH may be an important part of cellular adaptation to the IDH1 mutation and may serve as potential therapeutic targets. Public Library of Science 2014-09-22 /pmc/articles/PMC4171511/ /pubmed/25243911 http://dx.doi.org/10.1371/journal.pone.0108289 Text en © 2014 Izquierdo-Garcia et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Izquierdo-Garcia, Jose L. Cai, Larry M. Chaumeil, Myriam M. Eriksson, Pia Robinson, Aaron E. Pieper, Russell O. Phillips, Joanna J. Ronen, Sabrina M. Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title | Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title_full | Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title_fullStr | Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title_full_unstemmed | Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title_short | Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase |
title_sort | glioma cells with the idh1 mutation modulate metabolic fractional flux through pyruvate carboxylase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171511/ https://www.ncbi.nlm.nih.gov/pubmed/25243911 http://dx.doi.org/10.1371/journal.pone.0108289 |
work_keys_str_mv | AT izquierdogarciajosel gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT cailarrym gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT chaumeilmyriamm gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT erikssonpia gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT robinsonaarone gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT pieperrussello gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT phillipsjoannaj gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase AT ronensabrinam gliomacellswiththeidh1mutationmodulatemetabolicfractionalfluxthroughpyruvatecarboxylase |