Cargando…
Does complexity matter? Meta-analysis of learner performance in artificial grammar tasks
Complexity has been shown to affect performance on artificial grammar learning (AGL) tasks (categorization of test items as grammatical/ungrammatical according to the implicitly trained grammar rules). However, previously published AGL experiments did not utilize consistent measures to investigate t...
Autores principales: | Schiff, Rachel, Katan, Pesia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174743/ https://www.ncbi.nlm.nih.gov/pubmed/25309495 http://dx.doi.org/10.3389/fpsyg.2014.01084 |
Ejemplares similares
-
Artificial Grammar Learning Capabilities in an Abstract Visual Task Match Requirements for Linguistic Syntax
por: Westphal-Fitch, Gesche, et al.
Publicado: (2018) -
Learning simple and complex artificial grammars in the presence of a semantic reference field: effects on performance and awareness
por: Van den Bos, Esther, et al.
Publicado: (2015) -
An Entropy Model for Artificial Grammar Learning
por: Pothos, Emmanuel M.
Publicado: (2010) -
An introduction to grammar for language learners /
por: Ringe, Donald A., 1954-
Publicado: (2018) -
On the Role of English as a Foreign Language Learners’ Individual Differences in Their Use of Grammar Learning Strategies
por: Li, Shaoru
Publicado: (2022)