Cargando…
RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174954/ https://www.ncbi.nlm.nih.gov/pubmed/25236449 http://dx.doi.org/10.1534/genetics.114.165886 |
_version_ | 1782336428226641920 |
---|---|
author | Munger, Steven C. Raghupathy, Narayanan Choi, Kwangbom Simons, Allen K. Gatti, Daniel M. Hinerfeld, Douglas A. Svenson, Karen L. Keller, Mark P. Attie, Alan D. Hibbs, Matthew A. Graber, Joel H. Chesler, Elissa J. Churchill, Gary A. |
author_facet | Munger, Steven C. Raghupathy, Narayanan Choi, Kwangbom Simons, Allen K. Gatti, Daniel M. Hinerfeld, Douglas A. Svenson, Karen L. Keller, Mark P. Attie, Alan D. Hibbs, Matthew A. Graber, Joel H. Chesler, Elissa J. Churchill, Gary A. |
author_sort | Munger, Steven C. |
collection | PubMed |
description | Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. |
format | Online Article Text |
id | pubmed-4174954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-41749542014-10-02 RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations Munger, Steven C. Raghupathy, Narayanan Choi, Kwangbom Simons, Allen K. Gatti, Daniel M. Hinerfeld, Douglas A. Svenson, Karen L. Keller, Mark P. Attie, Alan D. Hibbs, Matthew A. Graber, Joel H. Chesler, Elissa J. Churchill, Gary A. Genetics Multiparental Populations Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. Genetics Society of America 2014-09 2014-09-01 /pmc/articles/PMC4174954/ /pubmed/25236449 http://dx.doi.org/10.1534/genetics.114.165886 Text en Copyright © 2014 by the Genetics Society of America Available freely online through the author-supported open access option. |
spellingShingle | Multiparental Populations Munger, Steven C. Raghupathy, Narayanan Choi, Kwangbom Simons, Allen K. Gatti, Daniel M. Hinerfeld, Douglas A. Svenson, Karen L. Keller, Mark P. Attie, Alan D. Hibbs, Matthew A. Graber, Joel H. Chesler, Elissa J. Churchill, Gary A. RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title | RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title_full | RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title_fullStr | RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title_full_unstemmed | RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title_short | RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations |
title_sort | rna-seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations |
topic | Multiparental Populations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174954/ https://www.ncbi.nlm.nih.gov/pubmed/25236449 http://dx.doi.org/10.1534/genetics.114.165886 |
work_keys_str_mv | AT mungerstevenc rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT raghupathynarayanan rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT choikwangbom rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT simonsallenk rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT gattidanielm rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT hinerfelddouglasa rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT svensonkarenl rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT kellermarkp rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT attiealand rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT hibbsmatthewa rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT graberjoelh rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT cheslerelissaj rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations AT churchillgarya rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations |