Cargando…

RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations

Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes...

Descripción completa

Detalles Bibliográficos
Autores principales: Munger, Steven C., Raghupathy, Narayanan, Choi, Kwangbom, Simons, Allen K., Gatti, Daniel M., Hinerfeld, Douglas A., Svenson, Karen L., Keller, Mark P., Attie, Alan D., Hibbs, Matthew A., Graber, Joel H., Chesler, Elissa J., Churchill, Gary A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174954/
https://www.ncbi.nlm.nih.gov/pubmed/25236449
http://dx.doi.org/10.1534/genetics.114.165886
_version_ 1782336428226641920
author Munger, Steven C.
Raghupathy, Narayanan
Choi, Kwangbom
Simons, Allen K.
Gatti, Daniel M.
Hinerfeld, Douglas A.
Svenson, Karen L.
Keller, Mark P.
Attie, Alan D.
Hibbs, Matthew A.
Graber, Joel H.
Chesler, Elissa J.
Churchill, Gary A.
author_facet Munger, Steven C.
Raghupathy, Narayanan
Choi, Kwangbom
Simons, Allen K.
Gatti, Daniel M.
Hinerfeld, Douglas A.
Svenson, Karen L.
Keller, Mark P.
Attie, Alan D.
Hibbs, Matthew A.
Graber, Joel H.
Chesler, Elissa J.
Churchill, Gary A.
author_sort Munger, Steven C.
collection PubMed
description Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations.
format Online
Article
Text
id pubmed-4174954
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-41749542014-10-02 RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations Munger, Steven C. Raghupathy, Narayanan Choi, Kwangbom Simons, Allen K. Gatti, Daniel M. Hinerfeld, Douglas A. Svenson, Karen L. Keller, Mark P. Attie, Alan D. Hibbs, Matthew A. Graber, Joel H. Chesler, Elissa J. Churchill, Gary A. Genetics Multiparental Populations Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. Genetics Society of America 2014-09 2014-09-01 /pmc/articles/PMC4174954/ /pubmed/25236449 http://dx.doi.org/10.1534/genetics.114.165886 Text en Copyright © 2014 by the Genetics Society of America Available freely online through the author-supported open access option.
spellingShingle Multiparental Populations
Munger, Steven C.
Raghupathy, Narayanan
Choi, Kwangbom
Simons, Allen K.
Gatti, Daniel M.
Hinerfeld, Douglas A.
Svenson, Karen L.
Keller, Mark P.
Attie, Alan D.
Hibbs, Matthew A.
Graber, Joel H.
Chesler, Elissa J.
Churchill, Gary A.
RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title_full RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title_fullStr RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title_full_unstemmed RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title_short RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations
title_sort rna-seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations
topic Multiparental Populations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174954/
https://www.ncbi.nlm.nih.gov/pubmed/25236449
http://dx.doi.org/10.1534/genetics.114.165886
work_keys_str_mv AT mungerstevenc rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT raghupathynarayanan rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT choikwangbom rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT simonsallenk rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT gattidanielm rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT hinerfelddouglasa rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT svensonkarenl rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT kellermarkp rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT attiealand rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT hibbsmatthewa rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT graberjoelh rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT cheslerelissaj rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations
AT churchillgarya rnaseqalignmenttoindividualizedgenomesimprovestranscriptabundanceestimatesinmultiparentpopulations