Cargando…
Robust Cre-Mediated Recombination in Small Intestinal Stem Cells Utilizing the Olfm4 Locus
The epithelium of the small intestine is the most rapidly self-renewing tissue in mammals. We previously demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression at the bottom of intestinal crypts. An Lgr5-eGFP-IRES-CreERT2 knockin allele has been instrumental...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175542/ https://www.ncbi.nlm.nih.gov/pubmed/25254337 http://dx.doi.org/10.1016/j.stemcr.2014.05.018 |
Sumario: | The epithelium of the small intestine is the most rapidly self-renewing tissue in mammals. We previously demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression at the bottom of intestinal crypts. An Lgr5-eGFP-IRES-CreERT2 knockin allele has been instrumental in characterizing and profiling these cells, yet its low level expression and its silencing in patches of adjacent crypts have not allowed quantitative gene deletion. Olfactomedin-4 (Olfm4) has emerged from a gene signature of Lgr5 stem cells as a robust marker for murine small intestinal stem cells. We observe that Olfm4(null) animals show no phenotype and report the generation of an Olfm4-IRES-eGFPCreERT2 knockin mouse model that allows visualization and genetic manipulation of Lgr5+ stem cells in the epithelium of the small intestine. The eGFPCreERT2 fusion protein faithfully marks all stem cells in the small intestine and induces the activation of a conditional LacZ reporter with robust efficiency. |
---|