Cargando…

Heterotaxy-spectrum heart defects in Zic3 hypomorphic mice

BACKGROUND: Mutations in ZIC3 cause X-linked heterotaxy and isolated cardiovascular malformations. Recent data suggest a potential cell-autonomous role for Zic3 in myocardium via regulation of Nppa and Tbx5. We sought to develop a hypomorphic Zic3 mouse to model human heterotaxy and investigate deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Haaning, Allison M., Quinn, Malgorzata E., Ware, Stephanie M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176930/
https://www.ncbi.nlm.nih.gov/pubmed/23999067
http://dx.doi.org/10.1038/pr.2013.147
Descripción
Sumario:BACKGROUND: Mutations in ZIC3 cause X-linked heterotaxy and isolated cardiovascular malformations. Recent data suggest a potential cell-autonomous role for Zic3 in myocardium via regulation of Nppa and Tbx5. We sought to develop a hypomorphic Zic3 mouse to model human heterotaxy and investigate developmental mechanisms underlying variability in cardiac phenotypes. METHODS: Zic3 hypomorphic mice were created by targeted insertion of a neomycin cassette and investigated by gross, histologic, and molecular methods RESULTS: Low level Zic3 expression is sufficient for partial rescue of viability as compared to Zic3 null mice. Concordance of early left-right molecular marker abnormalities and later anatomic abnormalities suggests the primary effect of Zic3 in heart development occurs during left-right patterning. Cardiac specific gene expression of Nppa (ANF) and Tbx5 marked the proper morphological locations in the heart regardless of looping abnormalities. CONCLUSIONS: Zic3 hypomorphic mice are a useful model to investigate the variable cardiac defects resulting from a single genetic defect. Low level Zic3 expression rescues the left pulmonary isomerism identified in Zic3 null embryos. Our data do not support a direct role for Zic3 in the myocardium via regulation of Nppa and Tbx5 and suggest the primary effect of Zic3 on cardiac development occurs during left-right patterning.