Cargando…
Removing batch effects for prediction problems with frozen surrogate variable analysis
Batch effects are responsible for the failure of promising genomic prognostic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to remove these artifacts, but they are designed to be used in populat...
Autores principales: | Parker, Hilary S., Corrada Bravo, Héctor, Leek, Jeffrey T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179553/ https://www.ncbi.nlm.nih.gov/pubmed/25332844 http://dx.doi.org/10.7717/peerj.561 |
Ejemplares similares
-
BatchQC: interactive software for evaluating sample and batch effects in genomic data
por: Manimaran, Solaiappan, et al.
Publicado: (2016) -
A direct approach to estimating false discovery rates conditional on covariates
por: Boca, Simina M., et al.
Publicado: (2018) -
svaseq: removing batch effects and other unwanted noise from sequencing data
por: Leek, Jeffrey T.
Publicado: (2014) -
Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis
por: Leek, Jeffrey T, et al.
Publicado: (2007) -
Neural network analysis of clinical variables predicts escalated care in COVID-19 patients: a retrospective study
por: Lu, Joyce Q., et al.
Publicado: (2021)