Cargando…
A 10(6)-Fold Enhancement in N(2)-Binding Affinity of an Fe(2)(μ-H)(2) Core upon Reduction to a Mixed-Valence Fe(II)Fe(I) State
[Image: see text] Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron–molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N(2) to NH(3) is unknown. One role of these ligands may be to facilitate N(2) coordination at an iron site...
Autores principales: | Rittle, Jonathan, McCrory, Charles C. L., Peters, Jonas C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183624/ https://www.ncbi.nlm.nih.gov/pubmed/25184795 http://dx.doi.org/10.1021/ja507217v |
Ejemplares similares
-
Mechanism of Mixed-Valence Fe(2.5+)···Fe(2.5+) Formation in Fe(4)S(4) Clusters in the
Ferredoxin Binding Motif
por: Kanda, Tomoki, et al.
Publicado: (2022) -
Catalytic conversion of nitrogen to ammonia by a molecular Fe model complex
por: Anderson, John S., et al.
Publicado: (2013) -
Million-fold activation of the [Fe(2)(μ-O)(2)] diamond core for C-H bond cleavage
por: Xue, Genqiang, et al.
Publicado: (2010) -
Generation of a μ-1,2-hydroperoxo Fe(III)Fe(III) and a μ-1,2-peroxo Fe(IV)Fe(III) Complex
por: Walleck, Stephan, et al.
Publicado: (2022) -
Bioinspired Hydrogenase Models: The Mixed-Valence
Triiron Complex [Fe(3)(CO)(7)(μ-edt)(2)] and Phosphine Derivatives [Fe(3)(CO)(7–x)(PPh(3))(x)(μ-edt)(2)] (x = 1, 2) and [Fe(3)(CO)(5)(κ(2)-diphosphine)(μ-edt)(2)] as Proton Reduction Catalysts
por: Rahaman, Ahibur, et al.
Publicado: (2014)