Cargando…
Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway
BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. METHODS...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183856/ https://www.ncbi.nlm.nih.gov/pubmed/25093489 http://dx.doi.org/10.1038/bjc.2014.435 |
Sumario: | BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. METHODS AND RESULTS: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and U251 cell lines and primary SU3 glioma cells. Western blot analysis and immunofluorescence staining revealed that IGFBP-2 promoted ERK phosphorylation and nuclear translocation. Moreover, blocking ERK activation using the inhibitor PD98059 markedly reduced the effects of IGFBP-2 in glioma cells. As IGFBP-2 has an integrin-binding domain, the contribution of integrin β1 to these IGFBP-2-mediated processes was examined. Neutralisation or knockdown of the expression of integrin β1 inhibited IGFBP-2-induced ERK activation, cell proliferation, and cell invasion. Significantly, IGFBP-2 induced temozolomide resistance in glioma cells in an integrin β1/ERK-dependent manner. CONCLUSIONS: Exogenous IGFBP-2 induces proliferation, invasion, and chemoresistance in glioma cells via integrin β1/ERK signaling, suggesting that targeting this pathway could represent a potential therapeutic strategy for the treatment of gliomas. The identification of this pathway in glioma progression provides insight into the mechanism by which serum IGFBP-2 levels can predict the prognosis of glioma patients. |
---|