Cargando…
Massively parallel read mapping on GPUs with the q-group index and PEANUT
We present the q-group index, a novel data structure for read mapping tailored towards graphics processing units (GPUs) with a small memory footprint and efficient parallel algorithms for querying and building. On top of the q-group index we introduce PEANUT, a highly parallel GPU-based read mapper....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184027/ https://www.ncbi.nlm.nih.gov/pubmed/25289191 http://dx.doi.org/10.7717/peerj.606 |
Sumario: | We present the q-group index, a novel data structure for read mapping tailored towards graphics processing units (GPUs) with a small memory footprint and efficient parallel algorithms for querying and building. On top of the q-group index we introduce PEANUT, a highly parallel GPU-based read mapper. PEANUT provides the possibility to output both the best hits or all hits of a read. Our benchmarks show that PEANUT outperforms other state-of-the-art read mappers in terms of speed while maintaining or slightly increasing precision, recall and sensitivity. |
---|