Cargando…

Selective antinociceptive effects of a combination of the N-methyl-D-aspartate receptor peptide antagonist [Ser(1)]histogranin and morphine in rat models of pain

Numerous rather than a few analgesic endogenous neuropeptides are likely to work in concert in vivo in ameliorating pain. Identification of effective neuropeptide combinations would also facilitate the development of gene or cell-based analgesics. In this study, opioid peptides endomorphin-1 (EM-1)...

Descripción completa

Detalles Bibliográficos
Autores principales: Hama, Aldric, Sagen, Jacqueline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184704/
https://www.ncbi.nlm.nih.gov/pubmed/25505581
http://dx.doi.org/10.1002/prp2.32
Descripción
Sumario:Numerous rather than a few analgesic endogenous neuropeptides are likely to work in concert in vivo in ameliorating pain. Identification of effective neuropeptide combinations would also facilitate the development of gene or cell-based analgesics. In this study, opioid peptides endomorphin-1 (EM-1) and endomorphin-2 (EM-2) and the peptide histogranin analogue [Ser(1)]histogranin (SHG), which possess activity as an N-methyl-d-aspartate (NMDA) receptor antagonist, were intrathecally (i.t.) injected alone and in combination in rat models of acute and persistent pain. None of the peptides when injected alone altered hind paw responses of uninjured rats to acute noxious stimulation. EM-1 and EM-2 showed divergent efficacies in the persistent pain models. For example, EM-1 injected alone was antinociceptive in rats with neuropathic pain, whereas EM-2 demonstrated no efficacy. Demonstration of synergism was also divergent across the models. For example, while SHG combined with EM-1 did not alter the efficacy of EM-1 in rats with neuropathic pain, SHG significantly increased the efficacy of EM-1 in the formalin test. By contrast, the potency and efficacy of the peptides alone and combinations were much less than those of the reference analgesic morphine. Furthermore, morphine combined with the clinically used NMDA receptor antagonist ketamine showed synergism across a broad range of pain states. While the current set of neuropeptides could serve as a basis for analgesic therapeutics, there could be other neuropeptides with greater efficacy and potency and broader therapeutic application.