Cargando…
Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect
We have recently reported that interferon gamma receptor deficient (IFNγR−/−) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188578/ https://www.ncbi.nlm.nih.gov/pubmed/25289677 http://dx.doi.org/10.1371/journal.pone.0109799 |
_version_ | 1782338248961425408 |
---|---|
author | Choi, Jaebok Cooper, Matthew L. Alahmari, Bader Ritchey, Julie Collins, Lynne Holt, Matthew DiPersio, John F. |
author_facet | Choi, Jaebok Cooper, Matthew L. Alahmari, Bader Ritchey, Julie Collins, Lynne Holt, Matthew DiPersio, John F. |
author_sort | Choi, Jaebok |
collection | PubMed |
description | We have recently reported that interferon gamma receptor deficient (IFNγR−/−) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that IFNγR signaling regulates alloreactive T cell trafficking to GvHD target organs through expression of the chemokine receptor CXCR3 in alloreactive T cells. Since IFNγR signaling is mediated via JAK1/JAK2, we tested the effect of JAK1/JAK2 inhibition on GvHD. While we demonstrated that pharmacologic blockade of JAK1/JAK2 in WT T cells using the JAK1/JAK2 inhibitor, INCB018424 (Ruxolitinib), resulted in a similar effect to IFNγR−/− T cells both in vitro (reduction of CXCR3 expression in T cells) and in vivo (mitigation of GvHD after allo-HSCT), it remains to be determined if in vivo administration of INCB018424 will result in preservation of GvL while reducing GvHD. Here, we report that INCB018424 reduces GvHD and preserves the beneficial GvL effect in two different murine MHC-mismatched allo-HSCT models and using two different murine leukemia models (lymphoid leukemia and myeloid leukemia). In addition, prolonged administration of INCB018424 further improves survival after allo-HSCT and is superior to other JAK1/JAK2 inhibitors, such as TG101348 or AZD1480. These data suggest that pharmacologic inhibition of JAK1/JAK2 might be a promising therapeutic approach to achieve the beneficial anti-leukemia effect and overcome HLA-barriers in allo-HSCT. It might also be exploited in other diseases besides GvHD, such as organ transplant rejection, chronic inflammatory diseases and autoimmune diseases. |
format | Online Article Text |
id | pubmed-4188578 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41885782014-10-10 Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect Choi, Jaebok Cooper, Matthew L. Alahmari, Bader Ritchey, Julie Collins, Lynne Holt, Matthew DiPersio, John F. PLoS One Research Article We have recently reported that interferon gamma receptor deficient (IFNγR−/−) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that IFNγR signaling regulates alloreactive T cell trafficking to GvHD target organs through expression of the chemokine receptor CXCR3 in alloreactive T cells. Since IFNγR signaling is mediated via JAK1/JAK2, we tested the effect of JAK1/JAK2 inhibition on GvHD. While we demonstrated that pharmacologic blockade of JAK1/JAK2 in WT T cells using the JAK1/JAK2 inhibitor, INCB018424 (Ruxolitinib), resulted in a similar effect to IFNγR−/− T cells both in vitro (reduction of CXCR3 expression in T cells) and in vivo (mitigation of GvHD after allo-HSCT), it remains to be determined if in vivo administration of INCB018424 will result in preservation of GvL while reducing GvHD. Here, we report that INCB018424 reduces GvHD and preserves the beneficial GvL effect in two different murine MHC-mismatched allo-HSCT models and using two different murine leukemia models (lymphoid leukemia and myeloid leukemia). In addition, prolonged administration of INCB018424 further improves survival after allo-HSCT and is superior to other JAK1/JAK2 inhibitors, such as TG101348 or AZD1480. These data suggest that pharmacologic inhibition of JAK1/JAK2 might be a promising therapeutic approach to achieve the beneficial anti-leukemia effect and overcome HLA-barriers in allo-HSCT. It might also be exploited in other diseases besides GvHD, such as organ transplant rejection, chronic inflammatory diseases and autoimmune diseases. Public Library of Science 2014-10-07 /pmc/articles/PMC4188578/ /pubmed/25289677 http://dx.doi.org/10.1371/journal.pone.0109799 Text en © 2014 Choi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Choi, Jaebok Cooper, Matthew L. Alahmari, Bader Ritchey, Julie Collins, Lynne Holt, Matthew DiPersio, John F. Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title | Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title_full | Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title_fullStr | Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title_full_unstemmed | Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title_short | Pharmacologic Blockade of JAK1/JAK2 Reduces GvHD and Preserves the Graft-Versus-Leukemia Effect |
title_sort | pharmacologic blockade of jak1/jak2 reduces gvhd and preserves the graft-versus-leukemia effect |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188578/ https://www.ncbi.nlm.nih.gov/pubmed/25289677 http://dx.doi.org/10.1371/journal.pone.0109799 |
work_keys_str_mv | AT choijaebok pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT coopermatthewl pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT alahmaribader pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT ritcheyjulie pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT collinslynne pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT holtmatthew pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect AT dipersiojohnf pharmacologicblockadeofjak1jak2reducesgvhdandpreservesthegraftversusleukemiaeffect |