Cargando…
Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis
BACKGROUND: The maintenance of stem cell pluripotency is controlled by a core cluster of transcription factors, NANOG, OCT4 and SOX2 – genes that jointly regulate each other’s expression. The expression of some of these genes, especially of Nanog, is heterogeneous in a population of undifferentiated...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189679/ https://www.ncbi.nlm.nih.gov/pubmed/25267505 http://dx.doi.org/10.1186/s12918-014-0112-4 |
_version_ | 1782338400270942208 |
---|---|
author | Lakatos, Dora Travis, Emily D Pierson, Kelsey E Vivian, Jay L Czirok, Andras |
author_facet | Lakatos, Dora Travis, Emily D Pierson, Kelsey E Vivian, Jay L Czirok, Andras |
author_sort | Lakatos, Dora |
collection | PubMed |
description | BACKGROUND: The maintenance of stem cell pluripotency is controlled by a core cluster of transcription factors, NANOG, OCT4 and SOX2 – genes that jointly regulate each other’s expression. The expression of some of these genes, especially of Nanog, is heterogeneous in a population of undifferentiated stem cells in culture. Transient changes in expression levels, as well as heterogeneity of the population is not restricted to this core regulator, but involve a large number of other genes that include growth factors, transcription factors or signal transduction proteins. RESULTS: As the molecular mechanisms behind NANOG expression heterogeneity is not yet understood, we explore by computational modeling the core transcriptional regulatory circuit and its input from autocrine FGF signals that act through the MAP kinase cascade. We argue that instead of negative feedbacks within the core NANOG-OCT4-SOX2 transcriptional regulatory circuit, autocrine signaling loops such as the Esrrb - FGF - ERK feedback considered here are likely to generate distinct sub-states within the “ON” state of the core Nanog switch. Thus, the experimentally observed fluctuations in Nanog transcription levels are best explained as noise-induced transitions between negative feedback-generated sub-states. We also demonstrate that ERK phosphorilation is altered and being anti-correlated with fluctuating Nanog expression – in accord with model simulations. Our modeling approach assigns an empirically testable function to the transcriptional regulators Klf4 and Esrrb, and predict differential regulation of FGF family members. CONCLUSIONS: We argue that slow fluctuations in Nanog expression likely reflect individual cell-specific changes in parameters of an autocrine feedback loop, such as changes in ligand capture efficiency, receptor numbers or the presence of crosstalks within the MAPK signal transduction pathway. We proposed a model that operates with binding affinities of multiple transcriptional regulators of pluripotency, and the activity of an autocrine signaling pathway. The resulting model produces varied expression levels of several components of pluripotency regulation, largely consistent with empirical observations reported previously and in this present work. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-014-0112-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4189679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-41896792014-10-23 Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis Lakatos, Dora Travis, Emily D Pierson, Kelsey E Vivian, Jay L Czirok, Andras BMC Syst Biol Research BACKGROUND: The maintenance of stem cell pluripotency is controlled by a core cluster of transcription factors, NANOG, OCT4 and SOX2 – genes that jointly regulate each other’s expression. The expression of some of these genes, especially of Nanog, is heterogeneous in a population of undifferentiated stem cells in culture. Transient changes in expression levels, as well as heterogeneity of the population is not restricted to this core regulator, but involve a large number of other genes that include growth factors, transcription factors or signal transduction proteins. RESULTS: As the molecular mechanisms behind NANOG expression heterogeneity is not yet understood, we explore by computational modeling the core transcriptional regulatory circuit and its input from autocrine FGF signals that act through the MAP kinase cascade. We argue that instead of negative feedbacks within the core NANOG-OCT4-SOX2 transcriptional regulatory circuit, autocrine signaling loops such as the Esrrb - FGF - ERK feedback considered here are likely to generate distinct sub-states within the “ON” state of the core Nanog switch. Thus, the experimentally observed fluctuations in Nanog transcription levels are best explained as noise-induced transitions between negative feedback-generated sub-states. We also demonstrate that ERK phosphorilation is altered and being anti-correlated with fluctuating Nanog expression – in accord with model simulations. Our modeling approach assigns an empirically testable function to the transcriptional regulators Klf4 and Esrrb, and predict differential regulation of FGF family members. CONCLUSIONS: We argue that slow fluctuations in Nanog expression likely reflect individual cell-specific changes in parameters of an autocrine feedback loop, such as changes in ligand capture efficiency, receptor numbers or the presence of crosstalks within the MAPK signal transduction pathway. We proposed a model that operates with binding affinities of multiple transcriptional regulators of pluripotency, and the activity of an autocrine signaling pathway. The resulting model produces varied expression levels of several components of pluripotency regulation, largely consistent with empirical observations reported previously and in this present work. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-014-0112-4) contains supplementary material, which is available to authorized users. BioMed Central 2014-09-27 /pmc/articles/PMC4189679/ /pubmed/25267505 http://dx.doi.org/10.1186/s12918-014-0112-4 Text en © Lakatos et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Lakatos, Dora Travis, Emily D Pierson, Kelsey E Vivian, Jay L Czirok, Andras Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title | Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title_full | Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title_fullStr | Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title_full_unstemmed | Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title_short | Autocrine FGF feedback can establish distinct states of Nanog expression in pluripotent stem cells: a computational analysis |
title_sort | autocrine fgf feedback can establish distinct states of nanog expression in pluripotent stem cells: a computational analysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189679/ https://www.ncbi.nlm.nih.gov/pubmed/25267505 http://dx.doi.org/10.1186/s12918-014-0112-4 |
work_keys_str_mv | AT lakatosdora autocrinefgffeedbackcanestablishdistinctstatesofnanogexpressioninpluripotentstemcellsacomputationalanalysis AT travisemilyd autocrinefgffeedbackcanestablishdistinctstatesofnanogexpressioninpluripotentstemcellsacomputationalanalysis AT piersonkelseye autocrinefgffeedbackcanestablishdistinctstatesofnanogexpressioninpluripotentstemcellsacomputationalanalysis AT vivianjayl autocrinefgffeedbackcanestablishdistinctstatesofnanogexpressioninpluripotentstemcellsacomputationalanalysis AT czirokandras autocrinefgffeedbackcanestablishdistinctstatesofnanogexpressioninpluripotentstemcellsacomputationalanalysis |