Cargando…
Antisense Oligonucleotides Capable of Promoting Specific Target mRNA Reduction via Competing RNase H1-Dependent and Independent Mechanisms
Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191969/ https://www.ncbi.nlm.nih.gov/pubmed/25299183 http://dx.doi.org/10.1371/journal.pone.0108625 |
Sumario: | Antisense oligonucleotides (ASOs) are most commonly designed to reduce targeted RNA via RNase H1-dependent degradation. In this paper we demonstrate that cellular proteins can compete for sites targeted by RNase H1-dependent ASOs. We further show that some ASOs designed to mediate RNase H1 cleavage can, in certain instances, promote target reduction both by RNase H1-mediated cleavage and by steric inhibition of binding of splicing factors at a site required for efficient processing of the pre-mRNA. In the latter case, RNase H cleavage was prevented by binding of a second protein, HSPA8, to the ASO/pre-mRNA heteroduplex. In addition, using a precisely controlled minigene system, we directly demonstrated that activity of ASOs targeting sites in introns is strongly influenced by splicing efficiency. |
---|