Cargando…

Novel Sustained-Release of Propafenone through Pellets: Preparation and in Vitro/in Vivo Evaluation

In this study, an extrusion-spheronization method was applied successfully to fabricate propafenone hydrochloride (PPF) sustained-release pellets. Using scanning electron microscopy, it was shown that the PPF pellets had a mean size of approximately 950 µm with a spherical shape. The in vitro releas...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li, Jiang, Ping, Liu, Ji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200845/
https://www.ncbi.nlm.nih.gov/pubmed/25184949
http://dx.doi.org/10.3390/ijms150915503
Descripción
Sumario:In this study, an extrusion-spheronization method was applied successfully to fabricate propafenone hydrochloride (PPF) sustained-release pellets. Using scanning electron microscopy, it was shown that the PPF pellets had a mean size of approximately 950 µm with a spherical shape. The in vitro release profiles indicated that the release of PPF from the pellets exhibited a sustained release behavior. The relatively high correlation coefficient (r) values obtained from the analysis of the amount of the drug released versus the square root of time indicated that the release followed a zero order kinetic model. A similar phenomenon was also observed in a pharmacokinetic study in dogs, in which the area under the curve (AUC) of the pellet formulation was 1.2-fold higher than that of PPF tablets. The present work demonstrated the feasibility of controlled delivery of PPF utilizing microcrystalline cellulose (MCC)-based pellets.