Cargando…
Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, thoug...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201555/ https://www.ncbi.nlm.nih.gov/pubmed/25330233 http://dx.doi.org/10.1371/journal.pone.0110544 |
_version_ | 1782340194164277248 |
---|---|
author | Huber, Robert J. Myre, Michael A. Cotman, Susan L. |
author_facet | Huber, Robert J. Myre, Michael A. Cotman, Susan L. |
author_sort | Huber, Robert J. |
collection | PubMed |
description | The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3(−) cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3(−) cells was precocious and cln3(−) slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3(−) cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3(−) cells, strongly supports the use of this new model for JNCL research. |
format | Online Article Text |
id | pubmed-4201555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42015552014-10-21 Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 Huber, Robert J. Myre, Michael A. Cotman, Susan L. PLoS One Research Article The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3(−) cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3(−) cells was precocious and cln3(−) slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3(−) cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3(−) cells, strongly supports the use of this new model for JNCL research. Public Library of Science 2014-10-17 /pmc/articles/PMC4201555/ /pubmed/25330233 http://dx.doi.org/10.1371/journal.pone.0110544 Text en © 2014 Huber et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Huber, Robert J. Myre, Michael A. Cotman, Susan L. Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title | Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title_full | Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title_fullStr | Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title_full_unstemmed | Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title_short | Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3 |
title_sort | loss of cln3 function in the social amoeba dictyostelium discoideum causes pleiotropic effects that are rescued by human cln3 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201555/ https://www.ncbi.nlm.nih.gov/pubmed/25330233 http://dx.doi.org/10.1371/journal.pone.0110544 |
work_keys_str_mv | AT huberrobertj lossofcln3functioninthesocialamoebadictyosteliumdiscoideumcausespleiotropiceffectsthatarerescuedbyhumancln3 AT myremichaela lossofcln3functioninthesocialamoebadictyosteliumdiscoideumcausespleiotropiceffectsthatarerescuedbyhumancln3 AT cotmansusanl lossofcln3functioninthesocialamoebadictyosteliumdiscoideumcausespleiotropiceffectsthatarerescuedbyhumancln3 |