Cargando…
Power analysis and sample size estimation for RNA-Seq differential expression
It is crucial for researchers to optimize RNA-seq experimental designs for differential expression detection. Currently, the field lacks general methods to estimate power and sample size for RNA-Seq in complex experimental designs, under the assumption of the negative binomial distribution. We simul...
Autores principales: | Ching, Travers, Huang, Sijia, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201821/ https://www.ncbi.nlm.nih.gov/pubmed/25246651 http://dx.doi.org/10.1261/rna.046011.114 |
Ejemplares similares
-
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
por: Zhu, Xun, et al.
Publicado: (2017) -
Error estimates for the analysis of differential expression from RNA-seq count data
por: Burden, Conrad J., et al.
Publicado: (2014) -
Using epigenomics data to predict gene expression in lung cancer
por: Li, Jeffery, et al.
Publicado: (2015) -
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018) -
Variance component testing for identifying differentially expressed genes in RNA-seq data
por: Yang, Sheng, et al.
Publicado: (2017)