Cargando…
Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells
Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophag...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202139/ https://www.ncbi.nlm.nih.gov/pubmed/25115395 |
_version_ | 1782340261693620224 |
---|---|
author | Xu, Ling-Zhi Long, Zi-Jie Peng, Fei Liu, Yang Xu, Jie Wang, Chang Jiang, Lei Guo, Tao Kamran, Muhammad Li, Si-Si Wang, Chun-Li Wang, Hong-Jiang Zhao, Yong-Fu Wan, Xian-Yao Liu, Quentin |
author_facet | Xu, Ling-Zhi Long, Zi-Jie Peng, Fei Liu, Yang Xu, Jie Wang, Chang Jiang, Lei Guo, Tao Kamran, Muhammad Li, Si-Si Wang, Chun-Li Wang, Hong-Jiang Zhao, Yong-Fu Wan, Xian-Yao Liu, Quentin |
author_sort | Xu, Ling-Zhi |
collection | PubMed |
description | Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy. |
format | Online Article Text |
id | pubmed-4202139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-42021392014-10-21 Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells Xu, Ling-Zhi Long, Zi-Jie Peng, Fei Liu, Yang Xu, Jie Wang, Chang Jiang, Lei Guo, Tao Kamran, Muhammad Li, Si-Si Wang, Chun-Li Wang, Hong-Jiang Zhao, Yong-Fu Wan, Xian-Yao Liu, Quentin Oncotarget Research Paper Aberrant Aur-A signaling is associated with tumor malignant behaviors. However, its involvement in tumor metabolic stress is not fully elucidated. In the present study, prolonged nutrient deprivation was conducted into breast cancer cells to mimic metabolic stress in tumors. In these cells, autophagy was induced, leading to caspase-independent cell death, which was blocked by either targeted knockdown of autophagic gene ATG5 or autophagy inhibitor 3-Methyladenine (3-MA). Aur-A overexpression mediated resistance to autophagic cell death and promoted breast cancer cells survival when exposed to metabolic stress. Moreover, we provided evidence that Aur-A suppressed autophagy in a kinase-dependent manner. Furthermore, we revealed that Aur-A overexpression enhanced the mammalian target of rapamycin (mTOR) activity under metabolic stress by inhibiting glycogen synthase kinase 3β (GSK3β). Inhibition of mTOR activity by rapamycin sensitized Aur-A-overexpressed breast cancer cells to metabolic stress-induced cell death. Consistently, we presented an inverse correlation between Aur-A expression (high) and autophagic levels (low) in clinical breast cancer samples. In conclusion, our data provided a novel insight into the cyto-protective role of Aur-A against metabolic stress by suppressing autophagic cell death, which might help to develop alternative cell death avenues for breast cancer therapy. Impact Journals LLC 2014-07-22 /pmc/articles/PMC4202139/ /pubmed/25115395 Text en Copyright: © 2014 Xu et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Xu, Ling-Zhi Long, Zi-Jie Peng, Fei Liu, Yang Xu, Jie Wang, Chang Jiang, Lei Guo, Tao Kamran, Muhammad Li, Si-Si Wang, Chun-Li Wang, Hong-Jiang Zhao, Yong-Fu Wan, Xian-Yao Liu, Quentin Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title | Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title_full | Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title_fullStr | Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title_full_unstemmed | Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title_short | Aurora kinase A suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells |
title_sort | aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mtor signaling in breast cancer cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202139/ https://www.ncbi.nlm.nih.gov/pubmed/25115395 |
work_keys_str_mv | AT xulingzhi aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT longzijie aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT pengfei aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT liuyang aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT xujie aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT wangchang aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT jianglei aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT guotao aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT kamranmuhammad aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT lisisi aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT wangchunli aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT wanghongjiang aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT zhaoyongfu aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT wanxianyao aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells AT liuquentin aurorakinaseasuppressesmetabolicstressinducedautophagiccelldeathbyactivatingmtorsignalinginbreastcancercells |