Cargando…

Accumulation and therapeutic modulation of 6-sulfo LacNAc(+) dendritic cells in multiple sclerosis

OBJECTIVE: To examine the potential role of 6-sulfo LacNAc(+) (slan) dendritic cells (DCs) displaying pronounced proinflammatory properties in the pathogenesis of multiple sclerosis (MS). METHODS: We determined the presence of slanDCs in demyelinated brain lesions and CSF samples of patients with MS...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Katja, Dietze, Kristin, Wehner, Rebekka, Metz, Imke, Tumani, Hayrettin, Schultheiß, Thorsten, Günther, Claudia, Schäkel, Knut, Reichmann, Heinz, Brück, Wolfgang, Schmitz, Marc, Ziemssen, Tjalf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204231/
https://www.ncbi.nlm.nih.gov/pubmed/25340085
http://dx.doi.org/10.1212/NXI.0000000000000033
Descripción
Sumario:OBJECTIVE: To examine the potential role of 6-sulfo LacNAc(+) (slan) dendritic cells (DCs) displaying pronounced proinflammatory properties in the pathogenesis of multiple sclerosis (MS). METHODS: We determined the presence of slanDCs in demyelinated brain lesions and CSF samples of patients with MS. In addition, we explored the impact of methylprednisolone, interferon-β, glatiramer acetate, or natalizumab on the frequency of blood-circulating slanDCs in patients with MS. We also evaluated whether interferon-β modulates important proinflammatory capabilities of slanDCs. RESULTS: SlanDCs accumulate in highly inflammatory brain lesions and are present in the majority of CSF samples of patients with MS. Short-term methylprednisolone administration reduces the percentage of slanDCs in blood of patients with MS and the proportion of tumor necrosis factor-α– or CD150-expressing slanDCs. Long-term interferon-β treatment decreases the percentage of blood-circulating slanDCs in contrast to glatiramer acetate or natalizumab. Furthermore, interferon-β inhibits the secretion of proinflammatory cytokines by slanDCs and their capacity to promote proliferation and differentiation of T cells. CONCLUSION: Accumulation of slanDCs in highly inflammatory brain lesions and their presence in CSF indicate that slanDCs may play an important role in the immunopathogenesis of MS. The reduction of blood-circulating slanDCs and the inhibition of their proinflammatory properties by methylprednisolone and interferon-β may contribute to the therapeutic efficiency of these drugs in patients with MS.