Cargando…

Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes

Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na(+) channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10(−8) m, evoked Ca(2+) transients in astrocytes from rat cerebral cortex, that were inositol...

Descripción completa

Detalles Bibliográficos
Autores principales: Block, Linda, Jörneberg, Per, Björklund, Ulrika, Westerlund, Anna, Biber, Björn, Hansson, Elisabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211363/
https://www.ncbi.nlm.nih.gov/pubmed/24083665
http://dx.doi.org/10.1111/ejn.12364
Descripción
Sumario:Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na(+) channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10(−8) m, evoked Ca(2+) transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca(2+) signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10(−8) m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca(2+) signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist.