Cargando…
Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF
Up-regulated expression of nucleolar GTPase Nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. Howe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212020/ https://www.ncbi.nlm.nih.gov/pubmed/24769896 http://dx.doi.org/10.1038/onc.2014.103 |
Sumario: | Up-regulated expression of nucleolar GTPase Nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear since imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor suppressor activity. It also remains in questions if aberrant NS levels might play a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the Alternative Reading Frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase ULF and elongated its half-life, while knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and NPM to serve as an alternative tumor suppressor surveillance, preventing potential cellular transformation resulting from the growth inducing effects of NS overexpression. |
---|