Cargando…

Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Coluzzi, Elisa, Colamartino, Monica, Cozzi, Renata, Leone, Stefano, Meneghini, Carlo, O’Callaghan, Nathan, Sgura, Antonella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212976/
https://www.ncbi.nlm.nih.gov/pubmed/25354277
http://dx.doi.org/10.1371/journal.pone.0110963
_version_ 1782341777359896576
author Coluzzi, Elisa
Colamartino, Monica
Cozzi, Renata
Leone, Stefano
Meneghini, Carlo
O’Callaghan, Nathan
Sgura, Antonella
author_facet Coluzzi, Elisa
Colamartino, Monica
Cozzi, Renata
Leone, Stefano
Meneghini, Carlo
O’Callaghan, Nathan
Sgura, Antonella
author_sort Coluzzi, Elisa
collection PubMed
description One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.
format Online
Article
Text
id pubmed-4212976
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42129762014-11-05 Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells Coluzzi, Elisa Colamartino, Monica Cozzi, Renata Leone, Stefano Meneghini, Carlo O’Callaghan, Nathan Sgura, Antonella PLoS One Research Article One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. Public Library of Science 2014-10-29 /pmc/articles/PMC4212976/ /pubmed/25354277 http://dx.doi.org/10.1371/journal.pone.0110963 Text en © 2014 Coluzzi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Coluzzi, Elisa
Colamartino, Monica
Cozzi, Renata
Leone, Stefano
Meneghini, Carlo
O’Callaghan, Nathan
Sgura, Antonella
Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title_full Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title_fullStr Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title_full_unstemmed Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title_short Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells
title_sort oxidative stress induces persistent telomeric dna damage responsible for nuclear morphology change in mammalian cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212976/
https://www.ncbi.nlm.nih.gov/pubmed/25354277
http://dx.doi.org/10.1371/journal.pone.0110963
work_keys_str_mv AT coluzzielisa oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT colamartinomonica oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT cozzirenata oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT leonestefano oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT meneghinicarlo oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT ocallaghannathan oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells
AT sguraantonella oxidativestressinducespersistenttelomericdnadamageresponsiblefornuclearmorphologychangeinmammaliancells