Cargando…

Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase

[Image: see text] Lipoyl synthase (LS) catalyzes the final step in lipoyl cofactor biosynthesis: the insertion of two sulfur atoms at C6 and C8 of an (N(6)-octanoyl)-lysyl residue on a lipoyl carrier protein (LCP). LS is a member of the radical SAM superfamily, enzymes that use a [4Fe–4S] cluster to...

Descripción completa

Detalles Bibliográficos
Autores principales: Lanz, Nicholas D., Pandelia, Maria-Eirini, Kakar, Elizabeth S., Lee, Kyung-Hoon, Krebs, Carsten, Booker, Squire J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216189/
https://www.ncbi.nlm.nih.gov/pubmed/24901788
http://dx.doi.org/10.1021/bi500432r
_version_ 1782342230137110528
author Lanz, Nicholas D.
Pandelia, Maria-Eirini
Kakar, Elizabeth S.
Lee, Kyung-Hoon
Krebs, Carsten
Booker, Squire J.
author_facet Lanz, Nicholas D.
Pandelia, Maria-Eirini
Kakar, Elizabeth S.
Lee, Kyung-Hoon
Krebs, Carsten
Booker, Squire J.
author_sort Lanz, Nicholas D.
collection PubMed
description [Image: see text] Lipoyl synthase (LS) catalyzes the final step in lipoyl cofactor biosynthesis: the insertion of two sulfur atoms at C6 and C8 of an (N(6)-octanoyl)-lysyl residue on a lipoyl carrier protein (LCP). LS is a member of the radical SAM superfamily, enzymes that use a [4Fe–4S] cluster to effect the reductive cleavage of S-adenosyl-l-methionine (SAM) to l-methionine and a 5′-deoxyadenosyl 5′-radical (5′-dA(•)). In the LS reaction, two equivalents of 5′-dA(•) are generated sequentially to abstract hydrogen atoms from C6 and C8 of the appended octanoyl group, initiating sulfur insertion at these positions. The second [4Fe–4S] cluster on LS, termed the auxiliary cluster, is proposed to be the source of the inserted sulfur atoms. Herein, we provide evidence for the formation of a covalent cross-link between LS and an LCP or synthetic peptide substrate in reactions in which insertion of the second sulfur atom is slowed significantly by deuterium substitution at C8 or by inclusion of limiting concentrations of SAM. The observation that the proteins elute simultaneously by anion-exchange chromatography but are separated by aerobic SDS-PAGE is consistent with their linkage through the auxiliary cluster that is sacrificed during turnover. Generation of the cross-linked species with a small, unlabeled (N(6)-octanoyl)-lysyl-containing peptide substrate allowed demonstration of both its chemical and kinetic competence, providing strong evidence that it is an intermediate in the LS reaction. Mössbauer spectroscopy of the cross-linked intermediate reveals that one of the [4Fe–4S] clusters, presumably the auxiliary cluster, is partially disassembled to a 3Fe-cluster with spectroscopic properties similar to those of reduced [3Fe–4S](0) clusters.
format Online
Article
Text
id pubmed-4216189
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-42161892015-06-05 Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase Lanz, Nicholas D. Pandelia, Maria-Eirini Kakar, Elizabeth S. Lee, Kyung-Hoon Krebs, Carsten Booker, Squire J. Biochemistry [Image: see text] Lipoyl synthase (LS) catalyzes the final step in lipoyl cofactor biosynthesis: the insertion of two sulfur atoms at C6 and C8 of an (N(6)-octanoyl)-lysyl residue on a lipoyl carrier protein (LCP). LS is a member of the radical SAM superfamily, enzymes that use a [4Fe–4S] cluster to effect the reductive cleavage of S-adenosyl-l-methionine (SAM) to l-methionine and a 5′-deoxyadenosyl 5′-radical (5′-dA(•)). In the LS reaction, two equivalents of 5′-dA(•) are generated sequentially to abstract hydrogen atoms from C6 and C8 of the appended octanoyl group, initiating sulfur insertion at these positions. The second [4Fe–4S] cluster on LS, termed the auxiliary cluster, is proposed to be the source of the inserted sulfur atoms. Herein, we provide evidence for the formation of a covalent cross-link between LS and an LCP or synthetic peptide substrate in reactions in which insertion of the second sulfur atom is slowed significantly by deuterium substitution at C8 or by inclusion of limiting concentrations of SAM. The observation that the proteins elute simultaneously by anion-exchange chromatography but are separated by aerobic SDS-PAGE is consistent with their linkage through the auxiliary cluster that is sacrificed during turnover. Generation of the cross-linked species with a small, unlabeled (N(6)-octanoyl)-lysyl-containing peptide substrate allowed demonstration of both its chemical and kinetic competence, providing strong evidence that it is an intermediate in the LS reaction. Mössbauer spectroscopy of the cross-linked intermediate reveals that one of the [4Fe–4S] clusters, presumably the auxiliary cluster, is partially disassembled to a 3Fe-cluster with spectroscopic properties similar to those of reduced [3Fe–4S](0) clusters. American Chemical Society 2014-06-05 2014-07-22 /pmc/articles/PMC4216189/ /pubmed/24901788 http://dx.doi.org/10.1021/bi500432r Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Lanz, Nicholas D.
Pandelia, Maria-Eirini
Kakar, Elizabeth S.
Lee, Kyung-Hoon
Krebs, Carsten
Booker, Squire J.
Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title_full Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title_fullStr Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title_full_unstemmed Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title_short Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase
title_sort evidence for a catalytically and kinetically competent enzyme–substrate cross-linked intermediate in catalysis by lipoyl synthase
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216189/
https://www.ncbi.nlm.nih.gov/pubmed/24901788
http://dx.doi.org/10.1021/bi500432r
work_keys_str_mv AT lanznicholasd evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase
AT pandeliamariaeirini evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase
AT kakarelizabeths evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase
AT leekyunghoon evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase
AT krebscarsten evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase
AT bookersquirej evidenceforacatalyticallyandkineticallycompetentenzymesubstratecrosslinkedintermediateincatalysisbylipoylsynthase