Cargando…
Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity
BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA ass...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219007/ https://www.ncbi.nlm.nih.gov/pubmed/25365920 http://dx.doi.org/10.1186/s12977-014-0094-8 |
_version_ | 1782342516295598080 |
---|---|
author | Obr, Martin Hadravová, Romana Doležal, Michal Křížová, Ivana Papoušková, Veronika Žídek, Lukáš Hrabal, Richard Ruml, Tomáš Rumlová, Michaela |
author_facet | Obr, Martin Hadravová, Romana Doležal, Michal Křížová, Ivana Papoušková, Veronika Žídek, Lukáš Hrabal, Richard Ruml, Tomáš Rumlová, Michaela |
author_sort | Obr, Martin |
collection | PubMed |
description | BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core – a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-014-0094-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4219007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42190072014-11-05 Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity Obr, Martin Hadravová, Romana Doležal, Michal Křížová, Ivana Papoušková, Veronika Žídek, Lukáš Hrabal, Richard Ruml, Tomáš Rumlová, Michaela Retrovirology Research BACKGROUND: Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core – a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS: Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION: Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-014-0094-8) contains supplementary material, which is available to authorized users. BioMed Central 2014-10-30 /pmc/articles/PMC4219007/ /pubmed/25365920 http://dx.doi.org/10.1186/s12977-014-0094-8 Text en © Obr et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Obr, Martin Hadravová, Romana Doležal, Michal Křížová, Ivana Papoušková, Veronika Žídek, Lukáš Hrabal, Richard Ruml, Tomáš Rumlová, Michaela Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title | Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title_full | Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title_fullStr | Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title_full_unstemmed | Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title_short | Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein– a critical step for infectivity |
title_sort | stabilization of the β-hairpin in mason-pfizer monkey virus capsid protein– a critical step for infectivity |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219007/ https://www.ncbi.nlm.nih.gov/pubmed/25365920 http://dx.doi.org/10.1186/s12977-014-0094-8 |
work_keys_str_mv | AT obrmartin stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT hadravovaromana stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT dolezalmichal stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT krizovaivana stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT papouskovaveronika stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT zideklukas stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT hrabalrichard stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT rumltomas stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity AT rumlovamichaela stabilizationofthebhairpininmasonpfizermonkeyviruscapsidproteinacriticalstepforinfectivity |