Cargando…
Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations
Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype–phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges fo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224177/ https://www.ncbi.nlm.nih.gov/pubmed/25230953 http://dx.doi.org/10.1534/genetics.114.167791 |
_version_ | 1782343316017250304 |
---|---|
author | Weiser, Matthew Mukherjee, Sayan Furey, Terrence S. |
author_facet | Weiser, Matthew Mukherjee, Sayan Furey, Terrence S. |
author_sort | Weiser, Matthew |
collection | PubMed |
description | Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype–phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, “network-based, large-scale identification of distal eQTL” (NetLIFT), which performs eQTL testing based on the pairwise conditional dependencies between genes’ expression levels. When applied to existing data from yeast segregants, NetLIFT replicated most previously identified distal eQTL and identified 46% more genes with distal effects compared to local effects. In liver data from mouse lines derived through the Collaborative Cross project, NetLIFT detected 5744 genes with local eQTL while 3322 genes had distal eQTL. This analysis revealed founder-of-origin effects for a subset of local eQTL that may contribute to previously described phenotypic differences in metabolic traits. In human lymphoblastoid cell lines, NetLIFT was able to detect 1274 transcripts with distal eQTL that had not been reported in previous studies, while 2483 transcripts with local eQTL were identified. In all species, we found no enrichment for transcription factors facilitating eQTL associations; instead, we found that most trans-acting factors were annotated for metabolic function, suggesting that genetic variation may indirectly regulate multigene pathways by targeting key components of feedback processes within regulatory networks. Furthermore, the unique genetic history of each population appears to influence the detection of genes with local and distal eQTL. |
format | Online Article Text |
id | pubmed-4224177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Genetics Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-42241772014-11-10 Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations Weiser, Matthew Mukherjee, Sayan Furey, Terrence S. Genetics Investigations Mapping expression quantitative trait loci (eQTL) has identified genetic variants associated with transcription rates and has provided insight into genotype–phenotype associations obtained from genome-wide association studies (GWAS). Traditional eQTL mapping methods present significant challenges for the multiple-testing burden, resulting in a limited ability to detect eQTL that reside distal to the affected gene. To overcome this, we developed a novel eQTL testing approach, “network-based, large-scale identification of distal eQTL” (NetLIFT), which performs eQTL testing based on the pairwise conditional dependencies between genes’ expression levels. When applied to existing data from yeast segregants, NetLIFT replicated most previously identified distal eQTL and identified 46% more genes with distal effects compared to local effects. In liver data from mouse lines derived through the Collaborative Cross project, NetLIFT detected 5744 genes with local eQTL while 3322 genes had distal eQTL. This analysis revealed founder-of-origin effects for a subset of local eQTL that may contribute to previously described phenotypic differences in metabolic traits. In human lymphoblastoid cell lines, NetLIFT was able to detect 1274 transcripts with distal eQTL that had not been reported in previous studies, while 2483 transcripts with local eQTL were identified. In all species, we found no enrichment for transcription factors facilitating eQTL associations; instead, we found that most trans-acting factors were annotated for metabolic function, suggesting that genetic variation may indirectly regulate multigene pathways by targeting key components of feedback processes within regulatory networks. Furthermore, the unique genetic history of each population appears to influence the detection of genes with local and distal eQTL. Genetics Society of America 2014-11 2014-09-16 /pmc/articles/PMC4224177/ /pubmed/25230953 http://dx.doi.org/10.1534/genetics.114.167791 Text en Copyright © 2014 by the Genetics Society of America Available freely online through the author-supported open access option. |
spellingShingle | Investigations Weiser, Matthew Mukherjee, Sayan Furey, Terrence S. Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title | Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title_full | Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title_fullStr | Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title_full_unstemmed | Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title_short | Novel Distal eQTL Analysis Demonstrates Effect of Population Genetic Architecture on Detecting and Interpreting Associations |
title_sort | novel distal eqtl analysis demonstrates effect of population genetic architecture on detecting and interpreting associations |
topic | Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224177/ https://www.ncbi.nlm.nih.gov/pubmed/25230953 http://dx.doi.org/10.1534/genetics.114.167791 |
work_keys_str_mv | AT weisermatthew noveldistaleqtlanalysisdemonstrateseffectofpopulationgeneticarchitectureondetectingandinterpretingassociations AT mukherjeesayan noveldistaleqtlanalysisdemonstrateseffectofpopulationgeneticarchitectureondetectingandinterpretingassociations AT fureyterrences noveldistaleqtlanalysisdemonstrateseffectofpopulationgeneticarchitectureondetectingandinterpretingassociations |