Cargando…
A spatial simulation approach to account for protein structure when identifying non-random somatic mutations
BACKGROUND: Current research suggests that a small set of “driver” mutations are responsible for tumorigenesis while a larger body of “passenger” mutations occur in the tumor but do not progress the disease. Due to recent pharmacological successes in treating cancers caused by driver mutations, a va...
Autores principales: | Ryslik, Gregory A, Cheng, Yuwei, Cheung, Kei-Hoi, Bjornson, Robert D, Zelterman, Daniel, Modis, Yorgo, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227039/ https://www.ncbi.nlm.nih.gov/pubmed/24990767 http://dx.doi.org/10.1186/1471-2105-15-231 |
Ejemplares similares
-
Utilizing protein structure to identify non-random somatic mutations
por: Ryslik, Gregory A, et al.
Publicado: (2013) -
A graph theoretic approach to utilizing protein structure to identify non-random somatic mutations
por: Ryslik, Gregory A, et al.
Publicado: (2014) -
Leveraging protein quaternary structure to identify oncogenic driver mutations
por: Ryslik, Gregory A., et al.
Publicado: (2016) -
Semantic Web-Based Integration of Cancer Pathways and Allele Frequency Data
por: Holford, Matthew E., et al.
Publicado: (2009) -
A spatially filtered multilevel model to account for spatial dependency: application
to self-rated health status in South Korea
por: Park, Yoo Min, et al.
Publicado: (2014)