Cargando…

α-Actinin-4-Mediated FSGS: An Inherited Kidney Disease Caused by an Aggregated and Rapidly Degraded Cytoskeletal Protein

Focal segmental glomerulosclerosis (FSGS) is a common pattern of renal injury, seen as both a primary disorder and as a consequence of underlying insults such as diabetes, HIV infection, and hypertension. Point mutations in theα-actinin-4 gene ACTN4 cause an autosomal dominant form of human FSGS. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, June, Le, Tu Cam, Kos, Claudine H, Henderson, Joel M, Allen, Phillip G, Denker, Bradley M, Pollak, Martin R
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423141/
https://www.ncbi.nlm.nih.gov/pubmed/15208719
http://dx.doi.org/10.1371/journal.pbio.0020167
Descripción
Sumario:Focal segmental glomerulosclerosis (FSGS) is a common pattern of renal injury, seen as both a primary disorder and as a consequence of underlying insults such as diabetes, HIV infection, and hypertension. Point mutations in theα-actinin-4 gene ACTN4 cause an autosomal dominant form of human FSGS. We characterized the biological effect of these mutations by biochemical assays, cell-based studies, and the development of a new mouse model. We found that a fraction of the mutant protein forms large aggregates with a high sedimentation coefficient. Localization of mutant α-actinin-4 in transfected and injected cells, as well as in situ glomeruli, showed aggregates of the mutant protein. Video microscopy showed the mutant α-actinin-4 to be markedly less dynamic than the wild-type protein. We developed a “knockin” mouse model by replacing Actn4 with a copy of the gene bearing an FSGS-associated point mutation. We used cells from these mice to show increased degradation of mutant α-actinin-4, mediated, at least in part, by the ubiquitin–proteasome pathway. We correlate these findings with studies of α-actinin-4 expression in human samples. “Knockin” mice with a disease-associated Actn4 mutation develop a phenotype similar to that observed in humans. Comparison of the phenotype in wild-type, heterozygous, and homozygous Actn4 “knockin” and “knockout” mice, together with our in vitro data, suggests that the phenotypes in mice and humans involve both gain-of-function and loss-of-function mechanisms.