Cargando…

Sorghum-based alcoholic beverage, Burukutu, perturbs the redox status of the liver of male rats

The redox status of male rat liver following 28 days consumption of Burukutu was investigated. Twenty rats were randomized into four groups with five rats each. Burukutu consumption at 0.78 g/kg alcohol produced no significant change in the activities of alkaline phosphatase (ALP), alanine aminotran...

Descripción completa

Detalles Bibliográficos
Autores principales: Ajiboye, Taofeek O, Iliasu, Ganiyat A, Ojewuyi, Oluwayemisi B, Abdulazeez, Azeemat T, Muhammed, Aisha O, Kolawole, Fausat L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237490/
https://www.ncbi.nlm.nih.gov/pubmed/25473518
http://dx.doi.org/10.1002/fsn3.139
Descripción
Sumario:The redox status of male rat liver following 28 days consumption of Burukutu was investigated. Twenty rats were randomized into four groups with five rats each. Burukutu consumption at 0.78 g/kg alcohol produced no significant change in the activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). However, 3.71 and 7.43 g/kg dosages resulted in significant decrease in the activities of ALP, ALT and AST with corresponding increase in serum. The activity of cytochrome P(450)(CYP 2E1) increased significantly in the liver of rats following consumption of Burukutu at all doses investigated. The activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase decreased significantly (P < 0.05) in rats treat with 0.78 g/kg, 3.41 and 7.43 g/kg Burukutu. There was a significant increase in the level of glutathione disulfide (GSSG) with reduction in the levels of glutathione reduced (GSH) and GSH:GSSG. The levels of oxidative stress biomarkers, malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and percentage DNA fragmentation, increased significantly (P < 0.05). It is evident from the alterations in the activities of the hepatocellular enzymes, antioxidant enzymes and oxidative stress biomarkers that Burukutu mediated its toxicity through the depletion of the antioxidant enzymes.