Cargando…

Bayesian approach for the estimation of cyclosporine area under the curve using limited sampling strategies in pediatric hematopoietic stem cell transplantation

BACKGROUND: The optimal marker for cyclosporine (CsA) monitoring in transplantation patients remains controversial. However, there is a growing interest in the use of the area under the concentration-time curve (AUC), particularly for cyclosporine dose adjustment in pediatric hematopoietic stem cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarem, Sarem, Li, Jun, Barriere, Olivier, Litalien, Catherine, Théorêt, Yves, Lapeyraque, Anne-Laure, Nekka, Fahima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237955/
https://www.ncbi.nlm.nih.gov/pubmed/25192585
http://dx.doi.org/10.1186/1742-4682-11-39
Descripción
Sumario:BACKGROUND: The optimal marker for cyclosporine (CsA) monitoring in transplantation patients remains controversial. However, there is a growing interest in the use of the area under the concentration-time curve (AUC), particularly for cyclosporine dose adjustment in pediatric hematopoietic stem cell transplantation. In this paper, we develop Bayesian limited sampling strategies (B-LSS) for cyclosporine AUC estimation using population pharmacokinetic (Pop-PK) models and investigate related issues, with the aim to improve B-LSS prediction performance. METHODS: Twenty five pediatric hematopoietic stem cell transplantation patients receiving intravenous and oral cyclosporine were investigated. Pop-PK analyses were carried out and the predictive performance of B-LSS was evaluated using the final Pop-PK model and several related ones. The performance of B-LSS when targeting different versions of AUC was also discussed. RESULTS: A two-compartment structure model with a lag time and a combined additive and proportional error is retained. The final covariate model does not improve the B-LSS prediction performance. The best performing models for intravenous and oral cyclosporine are the structure ones with combined and additive error, respectively. Twelve B-LSS, consisting of 4 or less sampling points obtained within 4 hours post-dose, predict AUC with 95(th) percentile of the absolute values of relative prediction errors of 20% or less. Moreover, B-LSS perform better for the prediction of the ‘underlying’ AUC derived from the Pop-PK model estimated concentrations that exclude the residual errors, in comparison to their prediction of the observed AUC directly calculated using measured concentrations. CONCLUSIONS: B-LSS can adequately estimate cyclosporine AUC. However, B-LSS performance is not perfectly in line with the standard Pop-PK model selection criteria; hence the final model might not be ideal for AUC prediction purpose. Therefore, for B-LSS application, Pop-PK model diagnostic criteria should additionally account for AUC prediction errors.