Cargando…

Improved performance of sequence search approaches in remote homology detection

The protein sequence space is vast and diverse, spanning across different families. Biologically meaningful relationships exist between proteins at superfamily level. However, it is highly challenging to establish convincing relationships at the superfamily level by means of simple sequence searches...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Adwait Govind, Raghavender, Upadhyayula Surya, Sowdhamini, Ramanathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240247/
https://www.ncbi.nlm.nih.gov/pubmed/25469226
http://dx.doi.org/10.12688/f1000research.2-93.v2
Descripción
Sumario:The protein sequence space is vast and diverse, spanning across different families. Biologically meaningful relationships exist between proteins at superfamily level. However, it is highly challenging to establish convincing relationships at the superfamily level by means of simple sequence searches. It is necessary to design a rigorous sequence search strategy to establish remote homology relationships and achieve high coverage. We have used iterative profile-based methods, along with constraints of sequence motifs, to specify search directions. We address the importance of multiple start points (queries) to achieve high coverage at protein superfamily level. We have devised strategies to employ a structural regime to search sequence space with good specificity and sensitivity. We employ two well-known sequence search methods, PSI-BLAST and PHI-BLAST, with multiple queries and multiple patterns to enhance homologue identification at the structural superfamily level. The study suggests that multiple queries improve sensitivity, while a pattern-constrained iterative sequence search becomes stringent at the initial stages, thereby driving the search in a specific direction and also achieves high coverage. This data mining approach has been applied to the entire structural superfamily database.